Functional Programming in C#

Oliver Sturm
oliver@oliversturm.com

: o ® MKr\(/)slofgl
http://www.oliversturm.com thinkecture ~ giigigin @ ot



mailto:oliver@oliversturm.com
mailto:oliver@oliversturm.com
http://www.oliversturm.com
http://www.oliversturm.com

Oliver Sturm (@olivers) Olier Sty

thinktectyre

e Consultant and Trainer
« Associate Consultant at thinktecture

o NET Application System Architecture
 User Interfaces
« Data Handling / Data Access Architectures
e Programming Languages
« DevExpress Component/Framework Products

e Microsoft MVP for C#
« INETA Europe Speaker

e Services: http://www.oliversturm.com
e Blog: http://www.sturmnet.org/blog

e oliver@oliversturm.com



http://www.oliversturm.com
http://www.oliversturm.com
http://www.sturmnet.org/blog
http://www.sturmnet.org/blog
mailto:oliver@oliversturm.com
mailto:oliver@oliversturm.com

Tweet and Win!

e Tweet something about this talk
e Include these details in your tweet:

e My Twitter name: @olivers
e The following hashtag: #dddofpcs

e Win this brilliant prize at the end of the talk:

A DevExpress CodeRush/Refactor! license




Focus: What C# can do with regard to FP and how
it works

» What is Functional Programming?
» FP Features introduced in C# 3.0 and .NET 3.5

« Map, Filter and Reduce
« Currying, Partial Application and Composition
« How does a C# programmer benefit from FP?




What is Functional Programming?

» A programming paradigm
» Focus on the application of functions
 Avoids state and mutable data

» Well-known languages include Lisp, Scheme,
Haskell, ML and (recently) F#

» FP languages tend to have features that support
Higher Order Functions, currying, recursion, list
comprehensions, ...

« Many imperative and OO languages have FP
features today




» Promotes modularization
 Lazy evaluation — greater efficiency

» Avold and/or manage side-etfects

» The target of avoiding side effects has several
advantages: scalability, optimization, debugging,
testing

o C# >= 3.0 supports many important FP
techniques




What’s in the box




« Map/Select does something with each element
in a list

 Filter/Where extracts elements from a list
based on some condition

 Reduce/Fold/Aggregate summarizes elements

in a list according to some calculation

 Select, Where and Aggregate are NET 3.5
implementations of these functions




What's in the box ... continued




« Map does something with each element in a list

e Filter extracts elements from a list based on
some condition

 Reduce/Fold summarizes elements in a list
according to some calculation




Map, Filter, Reduce




» Currying: Convert a function that takes multiple
parameters into a chain of functions that each
take one parameter and return the next function,
until the deepest nested function performs the
calculation with all the values and returns the

result.

 Partial Application: Fixing one or more
parameters of a function in curried form, creating
a new function with a more specific purpose.




Manual and Automatic Currying




Composition




» The idea of creating new functions from existing
ones

« Promotes modularization on a function level
 Partial Application is one way to do it
« Composition is another way:

Assuming B = f1(A), C = f2(B)
— f2(f1(A))




e« Aim: create function
int sumOfOddNumbers(int),

based on Reduce

 Using Partial Application to define accumulation
strategy for Reduce, as well as algorithm for

sequence creation

» Using Composition to allow for easier usage,
simplify parameters




Function Construction




» Functional modularization is not easy to get used
to, but very rewarding

 Unit testing can benetfit from a no-side-effects
philosophy
« Programming for scalability is easier, whether you

use your own threads, thread pools or toolkits like
ParallelFX

o It’s easier to get things done — try it yourself!

« BUT: Make sure your team members understand
1t, too!




« C# has good support for important Functional
Programming ideas

« Some “manual” work is required
 Syntax is sometimes a bit weird
« FP provides Glueing techniques (Currying, Partial

Application, Composition) on a function level,
introduces an additional level of modularization




Please feel free to contact me about the
content anytime.

oliver@oliversturm.com

Functional
Programming in C#

Classic Programming Techniques
for Modern Projects



mailto:oliver@sturmnet.org
mailto:oliver@sturmnet.org

