
Copyright © 2006‐2009 Oliver Sturm

Concurrency using
functional patterns in C#

Oliver Sturm - DevExpress
olivers@devexpress.com

oliver@sturmnet.org

Copyright © 2006‐2009 Oliver Sturm

Who’s that Oliver Sturm guy, anyway?

I am
Interested in programming languages,

databases and a whole bunch of other things
Microsoft MVP for C#

I do
Work for Developer Express as a Technical Evangelist

and Lead Program Manager
Blog at http://www.sturmnet.org/blog
Podcast at http://www.sodthis.com

You should
Email me at oliver@sturmnet.org
Follow me on Twitter @olivers

Copyright © 2006‐2009 Oliver Sturm

Agenda

   The many-core shift

   Concurrency using Parallel Extensions to .NET
–  … and what we still need to do ourselves

   Relevant functional approaches
–  Black belt list filtering
–  The amazing parallel Mandelbrot

Copyright © 2006‐2009 Oliver Sturm

The many-core shift is upon us

   For some weird and highly physical reasons,

single CPU cores don’t get much faster anymore

   Instead, we have lots of CPU cores
–  Some estimations show that we might have around 256

(per CPU) within 10 years
–  This is true for all types of computers by now, not

restricted to high-perf or server scenarios

   Result: if programs don’t parallelize, they use an
increasingly small percentage of the processing
power that’s available

Copyright © 2006‐2009 Oliver Sturm

Concurrency – really relevant?

   “Compute intensive tasks” are those that

benefit from concurrency – obviously not
all tasks are in that category

   But: what percentage of available
computing power do you want to turn
down? 50% (two cores, average laptop in
2009)? 75% (four cores, average desktop
in 2009)? More?

Copyright © 2006‐2009 Oliver Sturm

Multi-threading vs. Concurrency vs. Parallelism

   Things going on on a single core can be multi-
threaded
–  Perceived perf gains through “concurrent” updates
–  Hiding latency (network queries, …)

   Executing things literally concurrently or “in parallel”
means (almost) the same to me

   Daniel Moth disagrees – let him ;-)

   He’s right about this though: multiple cores come
with an opportunity to benefit from concurrency –
this shouldn’t be missed!

Copyright © 2006‐2009 Oliver Sturm

Doing the splits

   The idea of having lots of processes and just one

processor is old

   Now things change: several CPUs, more cores,
too few tasks

   We need to split up large tasks in lots of chunks
–  The more chunks, the better – parallelism frameworks

are more efficient that way

Copyright © 2006‐2009 Oliver Sturm

Demo

   TreeWalker

   Filtered list in the UI

Copyright © 2006‐2009 Oliver Sturm

Did you think that was ugly?

I wasn’t even using array resizing!

Copyright © 2006‐2009 Oliver Sturm

Data access the way it shouldn’t be

Copyright © 2006‐2009 Oliver Sturm

Concurrency frameworks

   Example: Parallel Extensions to the .NET

Framework

   Technical hurdles to multi-threading reduced

considerably

   Data/state sharing somewhat simplified

–  Thread-safe data structures
–  Advanced mechanisms like software transactional

memory

   Locking is becoming cheaper, but…

Copyright © 2006‐2009 Oliver Sturm

In the end, locks are bad

   Locks are expensive

–  They limit the amount of parallelization we can
use

–  They carry a low-level cost

   They are structurally complicated to work

with

   Result: the fewer locks we use, the better

   Algorithms should be structured carefully

to work with data in conflicting ways as
rarely as possible

Copyright © 2006‐2009 Oliver Sturm

Functional approaches…

   … aren’t strictly necessary for concurrency

   … offer one approach to a code structure

which lends itself well to parallelization

   … are often used in optimization efforts

without awareness of their origin

   At the core of FP ideas is function purity

   … which results – optimally – in the

absence of global data/state

What a coincidence!

Copyright © 2006‐2009 Oliver Sturm

Functional approaches and concurrency

   There are “only” two approaches that are
really important for concurrency
–  Try to work with immutable data
–  Try not to have data outside functions

   This won’t work all the time, so don’t worry

   It’s harder in imperative languages,

because they don’t enforce the discipline

   The lack of support for tail recursion is a

problem sometimes

Copyright © 2006‐2009 Oliver Sturm

Demo

   Filtered list in the UI (new and improved

version)

Copyright © 2006‐2009 Oliver Sturm

How this demo got better

   11 fewer lines of code!

   Okay, seriously:

–  Simple functions with just a return or a
statement

–  Easy to parallelize, since the algorithm is now
encapsulated in one function

   But:
–  Data is regarded as immutable, but mutable

data structures are still being used
–  One class-level field left

Copyright © 2006‐2009 Oliver Sturm

Demo

   Filtered list in the UI (supercharged

functional version)

Copyright © 2006‐2009 Oliver Sturm

What happened this time

   Yeah yeah… another 8 lines saved

   All functions are pure now

   Fully functional flow of data, no more

storage outside functions

   But:

–  Event handlers are delegates that use closures,
Windows Forms designer doesn’t have a clue
about this sort of thing

Copyright © 2006‐2009 Oliver Sturm

Demo

   Filtered list in the UI (Black Ninja version)

Copyright © 2006‐2009 Oliver Sturm

Parallelization in place

   “Declarative Data Parallelism” is what

PLINQ provides

   Changing the source of a LINQ query to
IParallelEnumerable by calling AsParallel()
on an IEnumerable takes care of
concurrency automatically

Copyright © 2006‐2009 Oliver Sturm

Demo

   Drawing Mandelbrot Fractals

Copyright © 2006‐2009 Oliver Sturm

Summary

   Frameworks like the .NET Parallel Extensions

are great

   … but they don’t do our structural work for us

   Functional approaches bring a useful
discipline to the imperative C# language

Copyright © 2006‐2009 Oliver Sturm

Thank you

Please feel free to contact me about the
content anytime.

oliver@sturmnet.org

