
Oliver Sturm
oliver@oliversturm.com

http://www.oliversturm.com

Oliver Sturm

Copyright © 2011 Oliver Sturm

Functional Programming in F#

4
4

1

mailto:oliver@oliversturm.com
mailto:oliver@oliversturm.com
http://www.oliversturm.com
http://www.oliversturm.com

• Consultant and Trainer, Author
• Associate Consultant at thinktecture

• .NET Application System Architecture
• User Interfaces
• Data Handling / Data Access Architectures
• Programming Languages
• DevExpress Component/Framework Products

• Microsoft MVP for C#
• INETA Europe Speaker

• Services: http://www.oliversturm.com
• Blog: http://www.sturmnet.org/blog

• oliver@oliversturm.com

Oliver Sturm (@olivers) Oliver Sturm

Copyright © 2011 Oliver Sturm

http://www.oliversturm.com
http://www.oliversturm.com
http://www.sturmnet.org/blog
http://www.sturmnet.org/blog
mailto:oliver@oliversturm.com
mailto:oliver@oliversturm.com

Agenda

Copyright © 2011 Oliver Sturm

• What is F#?
• What is Functional Programming all about and

why is it suddenly interesting?

F# Syntax Basics

Advanced Functions

Functional Techniques

Discriminated Unions

Copyright © 2011 Oliver Sturm

What is F#?

• A .NET language with Visual Studio integration
• A hybrid language, supporting functional as well

as imperative and object oriented paradigms
• Type safe
• Widely cross-compilable with Ocaml
• Scriptable
• F# is part of Visual Studio 2010

Copyright © 2011 Oliver Sturm

What do you need to get started?

• Visual Studio 2010
• Optional: F# PowerPack - source code, VS 2008

and mono support - YMMV

Copyright © 2011 Oliver Sturm

• Functional programming is a paradigm
• FP tries to avoid shared state
• Pure functions

– results calculated only on the basis of input values
– pure functions don’t store or access information outside

themselves, avoid side effects

• Functions are first class citizens, enabling higher
order functions

• Higher order functions enable currying and
partial application

• Functions are building blocks

The concept of Functional Programming

Copyright © 2011 Oliver Sturm

Avoiding side effects and shared state

• Debugging benefits from this approach
• Testing benefits as well
• Scalability becomes easy

– no locking of data
– no manual analysis of code structure to find scalable

parts

• Automatic optimization becomes possible
• Maintainability improves drastically

Copyright © 2011 Oliver Sturm

Parallelization is a (the?) trigger

• Writing code without side effects makes
parallelization easy

• Parallelization can be fully automatic… not yet in
F# though

• Functional approaches offer many solutions
• Functional programming as a paradigm is not

language specific, but the more language support
there is, the easier it becomes

Copyright © 2011 Oliver Sturm

The reality is that...
• F# is a .NET language that supports several different

programming paradigms
• Automatic parallelization does not exist (yet?) on

the .NET Framework
– but Parallel Extensions to the .NET Framework are in .NET 4.0
– the success of Erlang shows the reality of scalability, stability

and maintainability claims, Ericsson reports 99.9999999%
uptime (down 1 second in 30 years)

• Automatic optimization does not exist yet either
• A combination of approaches results in the best code for

a particular purpose
• The more flexible a programming language is, the easier

it is to combine approaches

Demo

Copyright © 2011 Oliver Sturm

• F# Syntax Basics

OPTIONAL

Demo

Copyright © 2011 Oliver Sturm

• Recursive functions
• Lambda expressions
• Nested functions
• Higher order functions

ALMOST
OPTIONAL

Copyright © 2011 Oliver Sturm

• The rec keyword is required to denote a function
as recursive
– if rec is missing, the function’s name is not in scope in

its own body

• Tail recursion is applied automatically if the
recursive call is the last statement executed in a
recursive function

Recursive functions

Copyright © 2011 Oliver Sturm

Lambda expressions

• Lambda expressions use the fun keyword and the
-‐> (goes-to) operator

• A lambda expression assigned to a value results in
the same function accessible through that value as
“let”-style function creation

• Lambda expressions are “anonymous functions”
• Lambda expressions cannot be recursive

Copyright © 2011 Oliver Sturm

Nested functions

• Functions do not have to be on “top level” scope
• Values assigned inside functions can also be

functions
• The scope of nested functions is the same as for

any other value assigned on the same “level”

Copyright © 2011 Oliver Sturm

Higher order functions

• Higher order functions take other functions as
parameters or return them as return values

• Any parameter passed to a function in F# can be a
function itself

• Functions can be return values of functions
• Lambda expressions can be used to pass functions

“in-line”
• Functions referred to by the values they have been

assigned to can also be used to pass as parameters

Copyright © 2011 Oliver Sturm

Nested calls and chaining (piping)

• Calls to functions delimit parameters with spaces
• Use parentheses to resolve ambiguity as well as

readability issues:
mult	 (add	 10	 30)	 40

• Pipes append the result of one function to the
parameter list of another:
add	 10	 30	 |>	 mult	 40

• Pipes result in a more natural order of calls in
complex nested statements

Copyright © 2011 Oliver Sturm

Composition

Assuming B	 =	 f1(A),	 C	 =	 f2(B)
→ C	 =	 f2(f1(A))

let	 square	 x	 =	 x	 *	 x

let	 triple	 x	 =	 3	 *	 x
...
let	 a	 =	 10
let	 b	 =	 square	 a
let	 c	 =	 triple	 b
...
let	 c	 =	 triple	 (square	 a)

Getting from a to c
step by step

Getting from a to c
by nesting calls

Demo

Copyright © 2011 Oliver Sturm

• Nested calls, chaining
• Composition

Copyright © 2011 Oliver Sturm

• Closures capture values that are used by
functions, when these functions leave their scope

Closures

let	 createCalculation	 val	 =
	 	 	 	 let	 calc	 x	 =	 val	 *	 x
	 	 	 	
	 	 	 	 calc

The function
calc needs the
value val to
perform its
calculation

The function calc
leaves the scope
of the value val

Demo

Copyright © 2011 Oliver Sturm

• Closures

Copyright © 2011 Oliver Sturm

• Currying is the process of transforming a function
with multiple parameters into a chain of functions
that each take one parameter and return the next
function, until on the deepest level the calculation
can be performed with all parameters.

Currying

let	 add	 x	 y	 =	 x	 +	 y let	 add	 x	 =
	 	 	 	 (fun	 y	 -‐>	 x	 +	 y)

Demo

Copyright © 2011 Oliver Sturm

• Curried format functions
• Partial application
• Functional precomputation
• Memoization

Copyright © 2011 Oliver Sturm

• In curried format, functions always take exactly
one parameter

• Functions might return other functions to gather
additional parameters

• The last function in the “chain” can perform the
calculation using all parameter values

• Closures are used to store parameter values

Curried format functions

Copyright © 2011 Oliver Sturm

Partial application

• Applying a function partially means passing in
some, but not all, parameters needed by the
function

• Due to the curried format, partial application of a
function means that another function is returned

• Partial application is one approach in the area of
“function construction”, i.e. creating new
functions out of existing ones

Copyright © 2011 Oliver Sturm

Functional precomputation

• Precomputation is an approach where expensive
calculations are performed in advance of an
algorithm run

• Precomputed values are stored for later use
• Functional precomputation means using a

function, or a closure, as a storage location
– no “external” storage is therefore needed

• Since curried functions are automatic in F#, the
approach is very elegant in this language

Copyright © 2011 Oliver Sturm

Memoization

• Memoization is a caching pattern that stores
values which have been calculated once for later
reuse

• It is possible to memoize as a wrapper function
• “Deep” memoization, i.e. memoization of a chain

of curried functions, requires Reflection
• Memoizing via a wrapper functions is meant not

to change the algorithm
– when the function is recursive, memoization “from the

outside” is typically not possible

Copyright © 2011 Oliver Sturm

• Discriminated unions are data types
• In simple cases discriminated unions behave like

enums
• Their uses cases are similar to those of enums

– case/kind distinction

Simple discriminated unions

type	 MemberKind	 =	
	 	 	 	 |	 Method	 =	 1
	 	 	 	 |	 Property	 =	 2
	 	 	 	 |	 Field	 =	 3

Copyright © 2011 Oliver Sturm

Elements that carry data
• Elements of discriminated unions can carry data
• In this case, the compiler generates classes

automatically

class	 Product	 {	 ...	 }
class	 OwnProduct	 :	 Product	 {	 ...	 }
class	 RemoteReference	 :	 Product	 {	 ...	 }

type	 Product	 =	
	 	 	 	 |	 OwnProduct	 of	 string
	 	 	 	 |	 RemoteReference	 of	 int

Copyright © 2011 Oliver Sturm

Data can be complex

• The data carried by elements may be of any valid
F# type

• Use of simple tuples and other discriminated
unions results in powerful data structures

type	 Product	 =	
	 	 	 	 |	 OwnProduct	 of	 string
	 	 	 	 |	 RemoteReference	 of	 int

type	 StoreBooking	 =	
	 	 	 	 |	 Incoming	 of	 Product	 *	 Count
	 	 	 	 |	 Outgoing	 of	 Product	 *	 Count

Copyright © 2011 Oliver Sturm

Definitions can be recursive

• Type definitions for discriminated unions can
refer to themselves

• Complex hierarchies can be created using
recursive discriminated unions

type	 Control	 =	
	 	 	 	 |	 Button	 of	 Caption
	 	 	 	 |	 CheckButton	 of	 Caption	 *	 Checked
	 	 	 	 |	 Edit	 of	 Caption	 *	 StrContent
	 	 	 	 |	 Container	 of	 Control	 list

Demo

Copyright © 2011 Oliver Sturm

• Discriminated unions
– simple unions / enums
– data-carrying members
– members with complex types
– recursive unions
– using match expressions to analyze union hierarchies
– implementation of a linked list using discriminated

unions

Summary

Copyright © 2011 Oliver Sturm

• F# - great new option for .NET
development

• Complete feature set spanning functional as well
as imperative/object-oriented programming

• I hope it was fun!

Thank you

Please feel free to contact me about the
content anytime.

oliver@oliversturm.com

Copyright © 2011 Oliver Sturm

mailto:oliver@sturmnet.org
mailto:oliver@sturmnet.org

