
Oliver Sturm

Functional Magic

Oliver Sturm | www.oliversturm.com

http://www.oliversturm.com
http://www.oliversturm.com


Oliver Sturm (@olivers)

•Consultant and Trainer
•Associate Consultant at thinktecture

•.NET Application Architecture
•User Interfaces
•Data Handling / Data Access Architectures
•Programming Languages
•DevExpress Component/Framework Products

•Microsoft MVP for C#
•INETA Europe Speaker

•Services: http://www.oliversturm.com
•Blog: http://www.sturmnet.org/blog

•oliver@oliversturm.com

Oliver Sturm

http://www.sturmnet.org/blog
http://www.sturmnet.org/blog
mailto:oliver@sturmnet.org
mailto:oliver@sturmnet.org


Agenda

•Where are we with .NET and FP?

•The Magic of Functional Programming

•Erlang

•Haskell



Hybrid World .NET

•Object Oriented system, primarily

•Functional elements creeping in

•F# now a “standard” language

•Parallelization makes FP interesting



Functional Programming is Magic

•I never understood it, I might be wearing 
the wrong glasses!

•I never have to rebuild my app
to fix bugs!

•Everything runs in parallel automatically!

•The system will run forever!

•My types will be so cool!

•Algorithms will write themselves!



Hermione Granger can do it

•… but we can’t, really

•Meanwhile, back in the real world...



Two functional languages

•Erlang

– Functional Language

– Dynamic Typing

– Hot Swapping

– Concurrency / Message Passing

– Facebook uses it in their Chat app, also 
delicious, CouchDB, Amazon SimpleDB, ...



Two functional languages

•Haskell

– Purely functional language

– Non-strict evaluation

– Interesting (strong!) type system

– Monads...

– Haskell in the industry: 
http://bit.ly/haskellindustry

http://bit.ly/haskellindustry
http://bit.ly/haskellindustry


Lots of stuff we can learn

•Simon Peyton Jones works for 
Microsoft :-)

•(Partly?) Functional APIs in .NET: LINQ, 
Reactive Extensions, Parallel Extensions

•Functional language elements in C#: 
lambda expressions, closures, iterators, 
expression trees, …

•F#



But some things are hard to imagine...

•Erlang hot-swapping code

•Erlang’s actor model for concurrency - 
message passing

•Being really lazy with Haskell

•Type Classes

•Software Transactional Memory

•Concise data and algorithms



Erlang: Hot-swapping code

•Fix a problem in code

•Rebuild, but don’t restart

•OTP patterns exist

•ASP.NET recycling AppDomains is a 
mechanism that looks similar (but isn’t 
really very close)



Demo

Erlang: Hot-swapping code



Erlang Concurrency

•Actor Model

•“Shared-nothing asynchronous message 
passing”

•Very cheap “processes”

•No shared state between processes! 
No locking!

•A bit like Async Pattern in .NET, a very 
decoupled SOA idea, …



Demo

Erlang: Concurrency



•Often summarized as “lazy”

•Call-by-need is the “evaluation strategy” 
used by Haskell

•Expressions only get evaluated when the 
result is actually needed, and then 
memoized

•In many strict languages you find non-
strict elements for short-circuiting

Haskell: a non-strict language



Demo

Being lazy with Haskell



•Type Classes define classes of types

•No, really!

•A bit like interfaces, but can contain 
implementation code

•A bit like abstract base classes, but are 
external to the type

•Haskell’s type inference is aware of Type 
Classes

Type Classes (Haskell)



Demo

Type Classes



•Some support for “automatic” 
parallelization - declarative parallelism

•Manual threading easy enough

•Data exchange through MVars leaves the 
locking problem

•Software Transactional Memory is 
elegant and safe through Monads

Haskell Concurrency and STM



Demo

Haskell Concurrency and STM



•Algebraic datatypes / Discriminated 
Unions / Tagged Unions

•F# supports Discriminated Unions

•Algorithms - pattern matching, tail 
recursion, lazy eval...

Data and Algorithms in Haskell



Demo

Data and Algorithms in Haskell

RedBlackSet implementation from Chris 
Okasaki: Purely Functional Data Structures



Thank you

Please feel free to contact me about the
content anytime.

oliver@oliversturm.com

mailto:oliver@oliversturm.com
mailto:oliver@oliversturm.com

