
Oliver Sturm

Oliver Sturm

Exception Patterns



Copyright © 2011 Oliver Sturm. All rights reserved. 

Oliver Sturm (@olivers)

• Consultant and Trainer, Author
• Associate Consultant at thinktecture

• .NET Application System Architecture
– User Interfaces
– Data Handling / Data Access Architectures
– Programming Languages
– DevExpress Component/Framework Products

• Microsoft MVP for C#
• INETA Europe Speaker

• Services: http://www.oliversturm.com
• Blog: http://www.sturmnet.org/blog

• oliver@oliversturm.com

Oliver Sturm

http://www.oliversturm.com
http://www.oliversturm.com
http://www.sturmnet.org/blog
http://www.sturmnet.org/blog
mailto:oliver@oliversturm.com
mailto:oliver@oliversturm.com


Copyright © 2011 Oliver Sturm. All rights reserved. 

Agenda

•Technical Stuff
–Why exceptions?
–Catching exceptions
–Throwing exceptions
–Which types to use

•The architectural side
–Guidelines and approaches
–Anti-patterns



Copyright © 2011 Oliver Sturm. All rights reserved. 

Old Style: Return Codes

• Cons:
– You had to define them
– You had to define them *all*
– Really no fun to do when function calls nest
– Technically difficult due to single return value
– In error conditions, they don’t tell you very much

• Pros:
– You had to define them
– You had to define them *all*



Copyright © 2011 Oliver Sturm. All rights reserved. 

Throwing and Bubbling

• Exceptions are objects that are “thrown”

• They “bubble” up the call stack until they are 
“caught”

• Language compilers enforce particular types for 
the exception objects themselves

• Exception types carry lots of useful information 
about error conditions

– General stuff like the stack trace

– Specific info related to the problem at hand



Copyright © 2011 Oliver Sturm. All rights reserved. 

Catching Exceptions

try	  {
	  	  //	  do	  something	  that	  may	  throw	  an	  exception
	  	  //	  ...
}
catch	  (Exception	  ex)	  {
	  	  //	  get	  here	  if	  an	  exception	  has	  been	  thrown
	  	  //	  in	  the	  block	  above	  -‐	  handle	  it	  using	  
	  	  //	  the	  ‘ex’	  variable
}



Copyright © 2011 Oliver Sturm. All rights reserved. 

A ‘finally’ block

try	  {
	  	  //	  do	  something	  that	  may	  throw	  an	  exception
	  	  //	  ...
}
catch	  (Exception	  ex)	  {
	  	  //	  get	  here	  if	  an	  exception	  has	  been	  thrown
	  	  //	  in	  the	  block	  above	  -‐	  handle	  it	  using	  
	  	  //	  the	  ‘ex’	  variable
}
finally	  {
	  	  //	  you	  come	  here	  in	  all	  cases,	  for	  instance
	  	  //	  to	  do	  cleanup	  work
}



Copyright © 2011 Oliver Sturm. All rights reserved. 

Demo

Catching exceptions
Using catch/finally
Bubbling in action

Exception Filters considered harmful!
Exceptions need compiler support



Copyright © 2011 Oliver Sturm. All rights reserved. 

Throwing Exceptions

throw	  new	  SomeException(“Error!”);



Copyright © 2011 Oliver Sturm. All rights reserved. 

Demo

Throwing exceptions



Copyright © 2011 Oliver Sturm. All rights reserved. 

Which Exceptions to Use?

• Standard exceptions:
– ArgumentException
– ArgumentNullException
– ArgumentOutOfRangeException

– InvalidOperationException
– Others from standard System.XXX namespaces, 

like FileNotFoundException, …

– If it’s there, you should use it - but read the 
description and see that it matches!
•Example description of FileLoadException: “The 
exception that is thrown when a managed 
assembly is found but cannot be loaded.”

Might want to use 
code contracts 
instead in .NET 4.0



Copyright © 2011 Oliver Sturm. All rights reserved. 

Which Exceptions to Use?

• Custom exceptions
– If there’s no matching standard exception
– If there’s a particular way of recovering from the 

error in question, so having a special type is useful
– If you have relevant additional information to 

supply

– Take care when implementing:
•[Serializable] and ISerializable
•Constructors
•SecurityPermissions
•Message and/or ToString overrides



Copyright © 2011 Oliver Sturm. All rights reserved. 

Demo

Custom exceptions



Copyright © 2011 Oliver Sturm. All rights reserved. 

Architectural Guidelines

• Catch exceptions in one “place” in your application, 
on a high level, so that you catch everything

• Accept that exceptions are exceptional. Don’t 
assume it makes sense to keep the app running.

– Being able to recover would make the unexpected 
expected, right?

• Catching, logging and reporting exceptions 
flawlessly is a difficult task. Consider leaving it to 
experts.



Copyright © 2011 Oliver Sturm. All rights reserved. 

Demo

Example: 
Catching exceptions in a Windows Forms app



Copyright © 2011 Oliver Sturm. All rights reserved. 

Anti-patterns

• Throwing from helper methods

• Using exceptions for flow control

• Catching the wrong way

• Catching and swallowing

• Rethrowing the wrong way

• Catching too much



Copyright © 2011 Oliver Sturm. All rights reserved. 

Demo

Exception anti-patterns



Copyright © 2011 Oliver Sturm. All rights reserved. 

Your own anti-patterns?

• What are your experiences? 

• What do you see people do right or wrong with 
exceptions?



Copyright © 2011 Oliver Sturm. All rights reserved. 

Summary

•Exceptions are a powerful tool
•Easy to use, easy to get wrong, easy 
to abuse

•You should definitely use exceptions, 
but use them the right way!



Copyright © 2011 Oliver Sturm. All rights reserved. 

Thank you!

Please feel free to contact me about 
the content anytime!

oliver@oliversturm.com

mailto:oliver@oliversturm.com
mailto:oliver@oliversturm.com

