
Oliver Sturm
oliver@oliversturm.com

http://www.oliversturm.com

Oliver Sturm

Copyright © 2010 Oliver Sturm

!"#$%&!'"()&*+"&,-.&,./-&)#001

www.sodthis.com

Concurrency using
functional patterns in C#

mailto:oliver@oliversturm.com
mailto:oliver@oliversturm.com
http://www.oliversturm.com
http://www.oliversturm.com

Who’s that Oliver Sturm guy, anyway?

I am
Interested in programming languages, databases,

DevExpress and other things
Microsoft MVP for C#
An Associate Consultant at thinktecture

I do
Provide Consulting and Training Services for

.NET and DevExpress Products
Blog at http://www.sturmnet.org/blog
Podcast at http://www.sodthis.com

You should
Email me at oliver@oliversturm.com
Follow me on Twitter @olivers
Go to http://www.oliversturm.com and check it out!

Copyright © 2010 Oliver Sturm

http://www.sturmnet.org/blog
http://www.sturmnet.org/blog
http://www.sodthis.com
http://www.sodthis.com
mailto:oliver@sturmnet.org
mailto:oliver@sturmnet.org
http://www.oliversturm.com
http://www.oliversturm.com

Agenda

Copyright © 2010 Oliver Sturm

• The many-core shift
• Concurrency using Parallel Extensions to .NET

– … and what we still need to do ourselves

• Relevant functional approaches
– Black belt list filtering
– The amazing parallel Mandelbrot

Copyright © 2010 Oliver Sturm

• For some weird and highly physical reasons,
single CPU cores don’t get much faster anymore

• Instead, we have lots of CPU cores
– Some estimations show that we might have around 256

(per CPU) within 10 years
– This is true for all types of computers by now, not

restricted to high-perf or server scenarios

• Result: if programs don’t parallelize, they use an
increasingly small percentage of the processing
power that’s available

The many-core shift is upon us

Copyright © 2010 Oliver Sturm

Concurrency — really relevant?

• “Compute intensive tasks” are those that benefit
from concurrency – obviously not all tasks are in
that category

• But: what percentage of available computing
power do you want to turn down? 50% (two cores,
average laptop in 2009)? 75% (four cores, average
desktop in 2009)? More?

Copyright © 2010 Oliver Sturm

Multi-threading vs. Concurrency vs. Parallelism

• Things going on on a single core can be multi-
threaded
– Perceived perf gains through “concurrent” updates
– Hiding latency (network queries, …)

• Executing things literally concurrently or “in
parallel” means (almost) the same to me

• Important point: multiple cores come with an
opportunity to benefit from concurrency – this
shouldn’t be missed!

Copyright © 2010 Oliver Sturm

Doing the splits

• The idea of having lots of processes and just one
processor is old

• Now things change: several CPUs, more cores, too
few tasks

• We need to split up large tasks in lots of chunks
– The more chunks, the better – parallelism frameworks

are more efficient that way

Demo

Copyright © 2010 Oliver Sturm

• TreeWalker
• Filtered list in the UI

Copyright © 2010 Oliver Sturm

I wasn’t even using array resizing!

Did you think that was ugly?

Copyright © 2010 Oliver Sturm

Data access the way it shouldn’t be

displayPeople
displayCount

Copyright © 2010 Oliver Sturm

Data access the way it shouldn’t be

displayPeople
displayCount

ResetDisplayPeople

Copyright © 2010 Oliver Sturm

Data access the way it shouldn’t be

displayPeople
displayCount

ResetDisplayPeople

UpdateUI

Copyright © 2010 Oliver Sturm

Data access the way it shouldn’t be

FilterData

displayPeople
displayCount

ResetDisplayPeople

UpdateUI

Copyright © 2010 Oliver Sturm

Concurrency frameworks

• Example: Parallel Extensions to the .NET
Framework

• Technical hurdles to multi-threading reduced
considerably

• Data/state sharing somewhat simplified
– Thread-safe data structures
– Advanced mechanisms like software transactional

memory

• Locking is becoming cheaper, but…

Copyright © 2010 Oliver Sturm

In the end, locks are bad

• Locks are expensive
– They limit the amount of parallelization we can use
– They carry a low-level cost

• They are structurally complicated to work with
• Result: the fewer locks we use, the better
• Algorithms should be structured carefully to work

with data in conflicting ways as rarely as possible

Copyright © 2010 Oliver Sturm

Functional approaches...

• … aren’t strictly necessary for concurrency
• … offer one approach to a code structure which

lends itself well to parallelization
• … are often used in optimization efforts without

awareness of their origin
• At the core of FP ideas is function purity
• … which results – optimally – in the absence of

global data/state

Copyright © 2010 Oliver Sturm

Functional approaches...

• … aren’t strictly necessary for concurrency
• … offer one approach to a code structure which

lends itself well to parallelization
• … are often used in optimization efforts without

awareness of their origin
• At the core of FP ideas is function purity
• … which results – optimally – in the absence of

global data/state

What a coincidence!

Copyright © 2010 Oliver Sturm

Functional approaches and concurrency

• There are “only” two approaches that are really
important for concurrency
– Try to work with immutable data
– Try not to have data outside functions

• This won’t work all the time, so don’t worry
• It’s harder in imperative languages, because they

don’t enforce the discipline
• The lack of support for tail recursion is a problem

sometimes

Demo

Copyright © 2010 Oliver Sturm

• Filtered list in the UI (new and improved version)

Copyright © 2010 Oliver Sturm

How this demo got better

Copyright © 2010 Oliver Sturm

• 11 fewer lines of code!

How this demo got better

Copyright © 2010 Oliver Sturm

• 11 fewer lines of code!
• Okay, seriously:

– Simple functions with just a return or a statement
– Easy to parallelize, since the algorithm is now

encapsulated in one function

How this demo got better

Copyright © 2010 Oliver Sturm

• 11 fewer lines of code!
• Okay, seriously:

– Simple functions with just a return or a statement
– Easy to parallelize, since the algorithm is now

encapsulated in one function

• But:
– Data is regarded as immutable, but mutable data

structures are still being used
– One class-level field left

How this demo got better

Demo

Copyright © 2010 Oliver Sturm

• Filtered list in the UI (supercharged functional
version)

Copyright © 2010 Oliver Sturm

• Yeah yeah… another 8 lines saved
• All functions are pure now
• Fully functional flow of data, no more storage

outside functions
• But:

– Event handlers are delegates that use closures,
Windows Forms designer doesn’t have a clue about this
sort of thing

What happened this time

Demo

Copyright © 2010 Oliver Sturm

• Filtered list in the UI (Black Ninja version)

Copyright © 2010 Oliver Sturm

Parallelization in place

• “Declarative Data Parallelism” is what PLINQ
provides

• Changing the source of a LINQ query to
IParallelEnumerable by calling AsParallel() on an
IEnumerable takes care of concurrency
automatically

Demo

Copyright © 2010 Oliver Sturm

• Drawing Mandelbrot Fractals

Summary

Copyright © 2010 Oliver Sturm

• Frameworks like the .NET Parallel Extensions are
great

• … but they don’t do our structural work for us
• Functional approaches bring a useful discipline to

the imperative C# language

Thank you

Please feel free to contact me about the
content anytime.

oliver@oliversturm.com

!"#$%&!'"()&*+"&,-.&,./-&)#001

www.sodthis.com

Copyright © 2010 Oliver Sturm

mailto:oliver@sturmnet.org
mailto:oliver@sturmnet.org

