

Oliver SturmOliver Sturm

Exception Patterns

1

Copyright © 2011 Oliver Sturm. All rights reserved.

Oliver Sturm (@olivers)

Consultant and Trainer, Author
Associate Consultant at thinktecture

.NET Application System Architecture
• User Interfaces
• Data Handling / Data Access Architectures
• Programming Languages
• DevExpress Component/Framework Products

Microsoft MVP for C#
INETA Europe Speaker

Services: http://www.oliversturm.com
Blog: http://www.sturmnet.org/blog

oliver@oliversturm.com

Oliver Sturm

http://www.oliversturm.com
http://www.oliversturm.com
http://www.sturmnet.org/blog
http://www.sturmnet.org/blog
mailto:oliver@oliversturm.com
mailto:oliver@oliversturm.com

Copyright © 2011 Oliver Sturm. All rights reserved.

Agenda

Technical Stuff
• Why exceptions?
• Catching exceptions
• Throwing exceptions
• Which types to use

The architectural side
• Guidelines and approaches
• Anti-patterns

Copyright © 2011 Oliver Sturm. All rights reserved.

Old Style: Return Codes

Cons:
• You had to define them
• You had to define them *all*
• Really no fun to do when function calls nest
• Technically difficult due to single return value
• In error conditions, they don’t tell you very much

Pros:
• You had to define them
• You had to define them *all*

Copyright © 2011 Oliver Sturm. All rights reserved.

Throwing and Bubbling

Exceptions are objects that are “thrown”
They “bubble” up the call stack until they are “caught”
Language compilers enforce particular types for the

exception objects themselves
Exception types carry lots of useful information about

error conditions
• General stuff like the stack trace
• Specific info related to the problem at hand

Copyright © 2011 Oliver Sturm. All rights reserved.

Catching Exceptions

try	
 {
	
 	
 //	
 do	
 something	
 that	
 may	
 throw	
 an	
 exception
	
 	
 //	
 ...
}
catch	
 (Exception	
 ex)	
 {
	
 	
 //	
 get	
 here	
 if	
 an	
 exception	
 has	
 been	
 thrown
	
 	
 //	
 in	
 the	
 block	
 above	
 -­‐	
 handle	
 it	
 using	

	
 	
 //	
 the	
 ‘ex’	
 variable
}

Copyright © 2011 Oliver Sturm. All rights reserved.

A ‘finally’ block

try	
 {
	
 	
 //	
 do	
 something	
 that	
 may	
 throw	
 an	
 exception
	
 	
 //	
 ...
}
catch	
 (Exception	
 ex)	
 {
	
 	
 //	
 get	
 here	
 if	
 an	
 exception	
 has	
 been	
 thrown
	
 	
 //	
 in	
 the	
 block	
 above	
 -­‐	
 handle	
 it	
 using	

	
 	
 //	
 the	
 ‘ex’	
 variable
}
finally	
 {
	
 	
 //	
 you	
 come	
 here	
 in	
 all	
 cases,	
 for	
 instance
	
 	
 //	
 to	
 do	
 cleanup	
 work
}

Copyright © 2011 Oliver Sturm. All rights reserved.

Demo

Catching exceptions
Using catch/finally
Bubbling in action

Exception Filters considered harmful!
Exceptions need compiler support

Copyright © 2011 Oliver Sturm. All rights reserved.

Throwing Exceptions

throw	
 new	
 SomeException(“Error!”);

Copyright © 2011 Oliver Sturm. All rights reserved.

Demo

Throwing exceptions

Copyright © 2011 Oliver Sturm. All rights reserved.

Which Exceptions to Use?

Standard exceptions:
• ArgumentException
• ArgumentNullException
• ArgumentOutOfRangeException

• InvalidOperationException
• Others from standard System.XXX namespaces, like

FileNotFoundException, …

• If it’s there, you should use it - but read the description
and see that it matches!
• Example description of FileLoadException: “The

exception that is thrown when a managed assembly is

Might want to use
code contracts
instead in .NET 4.0

Copyright © 2011 Oliver Sturm. All rights reserved.

Which Exceptions to Use?

Custom exceptions
• If there’s no matching standard exception
• If there’s a particular way of recovering from the error in

question, so having a special type is useful
• If you have relevant additional information to supply

• Take care when implementing:
• [Serializable] and ISerializable
• Constructors
• SecurityPermissions
• Message and/or ToString overrides

Copyright © 2011 Oliver Sturm. All rights reserved.

Demo

Custom exceptions

Copyright © 2011 Oliver Sturm. All rights reserved.

Architectural Guidelines

Catch exceptions in one “place” in your application, on a high
level, so that you catch everything

Accept that exceptions are exceptional. Don’t assume it
makes sense to keep the app running.

• Being able to recover would make the unexpected
expected, right?

Catching, logging and reporting exceptions flawlessly is a
difficult task. Consider leaving it to experts.

Copyright © 2011 Oliver Sturm. All rights reserved.

Demo

Example:
Catching exceptions in a Windows Forms app

Copyright © 2011 Oliver Sturm. All rights reserved.

Anti-patterns

Throwing from helper methods
Using exceptions for flow control
Catching the wrong way
Catching and swallowing
Rethrowing the wrong way
Catching too much

Copyright © 2011 Oliver Sturm. All rights reserved.

Demo

Exception anti-patterns

Copyright © 2011 Oliver Sturm. All rights reserved.

Your own anti-patterns?

What are your experiences?
What do you see people do right or wrong with exceptions?

Copyright © 2011 Oliver Sturm. All rights reserved.

Summary

Exceptions are a powerful tool
Easy to use, easy to get wrong, easy to abuse
You should definitely use exceptions, but use them the

right way!

Copyright © 2011 Oliver Sturm. All rights reserved.

Thank you!

Please feel free to contact me about the content anytime!

oliver@oliversturm.com

mailto:oliver@oliversturm.com
mailto:oliver@oliversturm.com

