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Agenda

Technical Stuff
• Why exceptions?
• Catching exceptions
• Throwing exceptions
• Which types to use

The architectural side
• Guidelines and approaches
• Anti-patterns
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Old Style: Return Codes

Cons:
• You had to define them
• You had to define them *all*
• Really no fun to do when function calls nest
• Technically difficult due to single return value
• In error conditions, they don’t tell you very much

Pros:
• You had to define them
• You had to define them *all*
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Throwing and Bubbling

Exceptions are objects that are “thrown”
They “bubble” up the call stack until they are “caught”
Language compilers enforce particular types for the 

exception objects themselves
Exception types carry lots of useful information about 

error conditions
• General stuff like the stack trace
• Specific info related to the problem at hand
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Catching Exceptions

try	
  {
	
  	
  //	
  do	
  something	
  that	
  may	
  throw	
  an	
  exception
	
  	
  //	
  ...
}
catch	
  (Exception	
  ex)	
  {
	
  	
  //	
  get	
  here	
  if	
  an	
  exception	
  has	
  been	
  thrown
	
  	
  //	
  in	
  the	
  block	
  above	
  -­‐	
  handle	
  it	
  using	
  
	
  	
  //	
  the	
  ‘ex’	
  variable
}
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A ‘finally’ block

try	
  {
	
  	
  //	
  do	
  something	
  that	
  may	
  throw	
  an	
  exception
	
  	
  //	
  ...
}
catch	
  (Exception	
  ex)	
  {
	
  	
  //	
  get	
  here	
  if	
  an	
  exception	
  has	
  been	
  thrown
	
  	
  //	
  in	
  the	
  block	
  above	
  -­‐	
  handle	
  it	
  using	
  
	
  	
  //	
  the	
  ‘ex’	
  variable
}
finally	
  {
	
  	
  //	
  you	
  come	
  here	
  in	
  all	
  cases,	
  for	
  instance
	
  	
  //	
  to	
  do	
  cleanup	
  work
}
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Demo

Catching exceptions
Using catch/finally
Bubbling in action

Exception Filters considered harmful!
Exceptions need compiler support



Copyright © 2011 Oliver Sturm. All rights reserved. 

Throwing Exceptions

throw	
  new	
  SomeException(“Error!”);



Copyright © 2011 Oliver Sturm. All rights reserved. 

Demo

Throwing exceptions
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Which Exceptions to Use?

Standard exceptions:
• ArgumentException
• ArgumentNullException
• ArgumentOutOfRangeException

• InvalidOperationException
• Others from standard System.XXX namespaces, like 

FileNotFoundException, …

• If it’s there, you should use it - but read the description 
and see that it matches!
• Example description of FileLoadException: “The 

exception that is thrown when a managed assembly is 

Might want to use 
code contracts 
instead in .NET 4.0
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Which Exceptions to Use?

Custom exceptions
• If there’s no matching standard exception
• If there’s a particular way of recovering from the error in 

question, so having a special type is useful
• If you have relevant additional information to supply

• Take care when implementing:
• [Serializable] and ISerializable
• Constructors
• SecurityPermissions
• Message and/or ToString overrides
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Demo

Custom exceptions
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Architectural Guidelines

Catch exceptions in one “place” in your application, on a high 
level, so that you catch everything

Accept that exceptions are exceptional. Don’t assume it 
makes sense to keep the app running.

• Being able to recover would make the unexpected 
expected, right?

Catching, logging and reporting exceptions flawlessly is a 
difficult task. Consider leaving it to experts.
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Demo

Example: 
Catching exceptions in a Windows Forms app
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Anti-patterns

Throwing from helper methods
Using exceptions for flow control
Catching the wrong way
Catching and swallowing
Rethrowing the wrong way
Catching too much
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Demo

Exception anti-patterns
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Your own anti-patterns?

What are your experiences? 
What do you see people do right or wrong with exceptions?
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Summary

Exceptions are a powerful tool
Easy to use, easy to get wrong, easy to abuse
You should definitely use exceptions, but use them the 

right way!
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Thank you!

Please feel free to contact me about the content anytime!

oliver@oliversturm.com
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