A day of F#

Oliver Sturm Oliver Sturm
oliver@sturmnet.org TEEF Y

olivers@devexpress.com o1
http://www.sturmnet.org/blog eliGld™

Who's that Oliver Sturm guy, anyway?

I am

Interested in programming languages,
databases and a whole bunch of other things

Microsoft MVP for C#

Ido
Work for DevExpress as Director of Quality
Blog at http://www.sturmnet.org/blog
Podcast at http://www.sodthis.com

You should
Email me at oliver@sturmnet.org
Follow me on Twitter @olivers

http://www.sturmnet.org/blog
http://www.sturmnet.org/blog
http://www.sodthis.com
http://www.sodthis.com
mailto:oliver@sturmnet.org
mailto:oliver@sturmnet.org

« Some background on Functional Programming
(0:30)

 Basics of F# syntax (0:45)

« Advanced functions and functional techniques
(1:25)

» Discriminated unions (0:40)

» Exception handling and other loose ends (1:00)
» Map, Filter and Fold (0:30)

» Object Oriented Programming (1:00)

A quick look at some add-ons

The concept of Functional Programming

« Functional programming is a paradigm
 FP tries to avoid shared state

e Pure functions

— results calculated only on the basis of input values
— pure functions don’t store or access information outside

themselves, avoid side effects

« Functions are first class citizens, enabling higher
order functions

« Higher order functions enable currying and
partial application

« Functions are building blocks

Avoiding side effects and shared state

» Debugging benefits from this approach
 Testing benetfits as well

 Scalability becomes easy

— no locking of data
— no manual analysis of code structure to find scalable

parts
« Automatic optimization becomes possible
» Maintainability improves drastically

Avoiding mutable data

« Mutable data requires the developer to doubt, at
any point in his code, everything that has
happened before

The statement is correct here int a
int b =

int ¢ =

Now the above statement
1S wrong

The reality is that...

« F# 1s a .NET language that supports several different
programming paradigms

« Automatic parallelization does not exist (yet?) on
the .NET Framework

— but Parallel Extensions to the .NET Framework will be part
of NET 4.0

— the success of Erlang shows the reality of scalability, stability
and maintainability claims, Ericsson reports 99.9999999%
uptime (down 1 second in 30 years)

« Automatic optimization does not exist yet either

« A combination of approaches results in the best code for
a particular purpose

» The more flexible a programming language is, the easier
it is to combine approaches

What is F#7?

« A .NET language with Visual Studio integration

» A hybrid language, supporting functional as well
as imperative and object oriented paradigms

 Type safe
» Widely cross-compilable with Ocaml

e Scriptable
« F# is being “productized” for Visual Studio 2010

Why is F# interesting?

 Testbed for features we see in C# later
— past: Generics were introduced to .NET at the initiative
of Don Syme

— past: LINQ has its roots in standard map/reduce/filter
approaches

— .NET 4.0 will have Lazy and Tuple types

« Optimized syntax for Functional Programming
allows easier combination of approaches

» Things that go beyond C# - metaprogramming,
type inference, ...

For whom is F# interesting?

« FP in general 1s good at calculating things —
academics, financial sector, business logic, ...

« MS wants to drive VS adoption in technical
computing markets and gain academic mindshare

 Big banks have been working on F# projects for a

long time, some were waiting for the
productization commitment

 Systems like Erlang show benefits of concurrency
strategies that FP promotes

« F# as a multi-paradigm language can be
interesting to everybody as a more flexible
alternative to other .NET languages

What do you need to get started?

« F# CTP for VS 2008 available: http://
research.microsoft.com/en-us/um/cambridge/
projects/fsharp/

 The latest release is the May 2009 CTP
« VS 2010 beta 1 contains a corresponding state, but

not the F# powerpack

» Expect changes at least until Visual Studio 2010 is
finalized

» Packages to run F# in mono are also available

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

« Some background on Functional Programming
(0:30)

» Basics of F# syntax (0:45)

« Advanced functions and functional techniques
(1:25)

» Discriminated unions (0:40)

» Exception handling and other loose ends (1:00)
» Map, Filter and Fold (0:30)

» Object Oriented Programming (1:00)

A quick look at some add-ons

« Immutable values, data types and type inference
» Tuples, lists and option types

« Match expressions

« Mutable values and reference cells

» Functions

» Code structure and formatting
» Flow control using “if” and “for”

Basic types

» Basic F# types are: (s)byte, (u)int16, (u)int32, (u)
int64, string, single, double, char, (u)nativeint,
bool, decimal, bigint and unit

o Literals can have postfixes denoting their types:
— vy (byte), s (int16), I (int32), n (nativeint), L (int64) for

integer types, combine these with u for an unsigned
value (uy, us, ...)

— f (float), I (bigint), m (decimal)
 Integer types can also use the prefixes 0x, 0o and

ob to represent numbers in hexadecimal, octal
and binary format

» Tuples combine other types into a new type, e.g.
int*string*int to combine an int, a string

and another int

 Tuple Literals in code use parentheses:
(10, “text”, 40)

 Tuples allow the construction of combined
“record” types on the fly, without prior
declaration

» Tuples don’t add behavior, they are “just” a
convenient combined data type

Working with .NET data types

« All NET Framework data types are available for
use 1n F#

o Instantiating them through their constructors

requires a call like this:
let sb = StringBuilder()

» Convention: if the type implements IDisposable,

use an explicit “new” keyword:
let form = new Form()

Option Types

« Option types represent the notion that values
might not “have a value”

A value of type Option<T> can be assigned either
Some(T) or None

 Similar concept to the idea of “null” in many

imperative languages

o Lists in F# are immutable data structures,
implemented as singly-linked lists

o Literals in code use brackets: [1, 2, 3]

o Lists are typed, so the types of contained elements
must be compatible

» The empty list is represented as []

» The operators : : and @ are used to prepend an

element to a list and concatenate two lists,
respectively

— both these operators return a new list object — lists are
immutable

Match Expressions

e Match expressions apply one or more patterns to
a value

» Checks can test for literals or other values
« Complex tests can test for Some() vs. None to
support option types, empty listsand hd :: tl

constructs to support lists

« Decomposing of values in match expressions is
also possible

Mutability

 Values are immutable by default

« Mutable values are supported through the
mutable keyword and the “ref cells” technique

 Only ref cells can be used in closures

» Assignment operators differ depending on the
“kind” of mutability used
— assignments for “mutable” types use < -

— with ref cells, assignments use : =

« Immutability can be shallow
— the built-in array type is not immutable itself

Functions

» Functions are values themselves
» Functions are in curried format automatically
o Calls to functions separate parameters by spaces

e Indentation defines the structure of a function’s
body

» The result of the last statement in the body of a
function is also the result of the function

« Some background on Functional Programming
(0:30)
» Basics of F# syntax (0:45)

« Advanced functions and functional
techniques (1:25)

» Discriminated unions (0:40)

» Exception handling and other loose ends (1:00)
» Map, Filter and Fold (0:30)

» Object Oriented Programming (1:00)

A quick look at some add-ons

» Recursive functions

« Lambda expressions

» Nested functions

» Higher order functions

Recursive functions

» The rec keyword is required to denote a function

as recursive

— if rec is missing, the function’s name is not in scope in
its own body

e Tail recursion is applied automatically if the

recursive call is the last statement executed 1n a
recursive function

Lambda expressions

« Lambda expressions use the fun keyword and the
-> (goes-to) operator
« A lambda expression assigned to a value results in

the same function accessible through that value as
“let”-style function creation

« Lambda expressions are “anonymous functions”
« Lambda expressions cannot be recursive

Nested functions

« Functions do not have to be on “top level” scope

» Values assigned inside functions can also be
functions

» The scope of nested functions is the same as for
any other value assigned on the same “level”

Higher order functions

» Higher order functions take other functions as
parameters or return them as return values

« Any parameter passed to a function in F# can be a
function itself

« Functions can be return values of functions

« Lambda expressions can be used to pass functions
“In-line”

» Functions referred to by the values they have been
assigned to can also be used to pass as parameters

Nested calls and chaining (piping)

o Calls to functions delimit parameters with spaces

» Use parentheses to resolve ambiguity as well as

readability issues:
mult (add 10 30) 40

 Pipes append the result of one function to the

parameter list of another:
add 10 30 |> mult 40

 Pipes result in a more natural order of calls in
complex nested statements

Assuming B = f1(A), C =
— C = f2(f1(A))

let square x
let triple x

let a
—— Jet
let

10
square
triple

Getting fromatoc
step by step

Getting from atoc -
by nesting calls > let

= triple (square a)

» Nested calls, chaining
« Composition

Closures

» Closures capture values that are used by
functions, when these functions leave their scope

let createCalculation val =
let calc x = val * x

—>

The function _
calc needs the calc
value val to
perform its
calculation

The function calc
leaves the scope
of the value val

Demo

e Closures

 Currying is the process of transforming a function
with multiple parameters into a chain of functions
that each take one parameter and return the next
function, until on the deepest level the calculation
can be performed with all parameters.

let add Xy = x +y _)1etaddx=
(funy -> X + Vy)

 Curried format functions

o Partial application

» Functional precomputation
» Memoization

Curried format functions

» In curried format, functions always take exactly
one parameter

» Functions might return other functions to gather
additional parameters

 The last function in the “chain” can perform the

calculation using all parameter values
» Closures are used to store parameter values

Partial application

» Applying a function partially means passing in
some, but not all, parameters needed by the
function

» Due to the curried format, partial application of a
function means that another function is returned

o Partial application is one approach in the area of
“function construction”, i.e. creating new
functions out of existing ones

Functional precomputation

» Precomputation is an approach where expensive
calculations are performed in advance of an
algorithm run

» Precomputed values are stored for later use
» Functional precomputation means using a

function, or a closure, as a storage location
— no “external” storage 1s therefore needed

 Since curried functions are automatic in F#, the
approach is very elegant in this language

Memoilzation

« Memoization is a caching pattern that stores
values which have been calculated once for later
reuse

o It is possible to memoize as a wrapper function
« “Deep” memoization, 1.e. memoization of a chain

of curried functions, requires Reflection
« Memoizing via a wrapper functions is meant not
to change the algorithm

— when the function is recursive, memoization “from the
outside” is typically not possible

« Some background on Functional Programming
(0:30)

 Basics of F# syntax (0:45)

« Advanced functions and functional techniques
(1:25)

» Discriminated unions (0:40)

» Exception handling and other loose ends (1:00)
» Map, Filter and Fold (0:30)

» Object Oriented Programming (1:00)

A quick look at some add-ons

Simple discriminated unions

 Discriminated unions are data types

 In simple cases discriminated unions behave like
enums

e Their uses cases are similar to those of enums
— case/kind distinction

type MemberKind =
| Method = 1
| Property = 2
| Field = 3

Elements that carry data

» Elements of discriminated unions can carry data

o In this case, the compiler generates classes
automatically

type Product =
| OwnProduct of string
| RemoteReference of int

\

class Product { ... }
class OwnProduct : Product { ... }
class RemoteReference : Product { ... }

Data can be complex

» The data carried by elements may be of any valid
F# type

 Use of simple tuples and other discriminated
unions results in powerful data structures

type Product =
| OownProduct of string
| RemoteReference of int

type StoreBooking =
| Incoming of Product * Count
| outgoing of Product * Count

Definitions can be recursive

 Type definitions for discriminated unions can
refer to themselves

« Complex hierarchies can be created using
recursive discriminated unions

type Control =
| Button of Caption
| CheckButton of Caption * Checked
| Edit of Caption * StrContent
| Container of Control list

e Discriminated unions

— simple unions / enums

— data-carrying members

— members with complex types
— recursive unions

— using match expressions to analyze union hierarchies

— implementation of a linked list using discriminated
unions

« Some background on Functional Programming
(0:30)

 Basics of F# syntax (0:45)

« Advanced functions and functional techniques
(1:25)

» Discriminated unions (0:40)

- Exception handling and other loose ends
(1:00)

» Map, Filter and Fold (0:30)

» Object Oriented Programming (1:00)

A quick look at some add-ons

Exception Handling

» F# needs to be able to handle exceptions to be
compatible with .NET

e try/with and try/finally are available, same as try/
catch and try/finally in C#

« Exception handling blocks can be used in

eXpressions

» Pattern matching applied to exceptions makes
filtering very flexible

 Use the exception keyword to create custom
exceptions

Handling IDisposable

 “using” 1s a higher order function that disposes at
the end of the function it gets passed

» “use" 1s a keyword that disposes at the end of the
current code block

let writeFile() =
using (File.CreateText("file.txt"))
(fun file ->
file.WriteLine("Stuff in the file"))

let writeFile2() =
use file = File.CreateText("file2.txt")
file.WriteLine("Stuff in other file")

 Catching exceptions

 Creating custom exceptions
 Raising and rethrowing exception
e try/finally

* uSe

e USIng

Catching exceptions

» Exceptions can be caught using try/with blocks
» These blocks can appear on their own or in expressions

try
let foo = 10 / ©
printfn "%d" foo
with
| :? InvalidOperationException as e ->
printf "InvalidOperationException: %s" e.Message
| e -> printfn "Other exception: %s" e.Message

let result =
try
Some(10 / 0O)
with
| _ -> None

Creating custom exceptions

» The “exception” keyword is used to create custom
exceptions

« Implementation of the exception is automatic,
only the type of the data it carries needs to be
specified

exception MyOwnException of string * int

try
raise (MyOwnException("An error has occurred", 42))
with
| MyOwnException(strval, intval) -»>
printfn "Got exception with str='%s', int=%d"
strVal intVal

 Casting up

 Casting down

» Using match expressions for type checking
« Converting numeric data types

e Lists in F# are immutable single-linked lists

» The implementation is based on discriminated
unions

o List comprehension syntax
—] 1s the empty list

—[b .. s .. e]initializes a list with values starting

with b, stepping by s and ending at e
— [for .. -> ..]initializes a list with a custom

calculation

» The module Microsoft.FSharp.Collections.List
makes further helper functionality available

« hd :: tl syntaxis available in match expressions

Sequences

« F# sequences are based on IEnumerable<T>

 Evaluation is lazy, like an iterator in C#, or more
generally, a continuation

» List comprehensions similar to lists are available,
but using curly braces { .. }

« The seq { .. } workflow can be used for more

complex value creation
— the workflow uses the yield and yield! keywords to
“pass back” data to the outer context

« The module Microsoft.FSharp.Collections.Seq has
more functionality

o Lists

o List handling

— head/tail
— cons, append

e Sequences

« Some background on Functional Programming
(0:30)

 Basics of F# syntax (0:45)

« Advanced functions and functional techniques
(1:25)

» Discriminated unions (0:40)

» Exception handling and other loose ends (1:00)
« Map, Filter and Fold (0:30)

» Object Oriented Programming (1:00)

A quick look at some add-ons

Map, Filter and Fold

o Available in almost all programming languages/
runtimes, sometimes with varying names

» Available in LINQ as Select, Filter and Aggregate

— functionality provided by map, filter and fold is similar
to database querying functionality

« F# implementations List. XXX are for lists,
Seq. XXX are for sequences

 Using function construction, these functions form
the basis of new functionality

» Map applies a function to each element in a list,
returning a list of results

99 9@

o

<transformation function>

» Filter applies a predicate function to each element
in a list, returning the elements that fit the
predicate

@9 @9

o

<filter function>

U

AL

 Fold aggregates values in a list using an
aggregation function

v

<aggregation function>

L
4

Google MapReduce

» Google MapReduce is a parallel computation
framework based on map and fold (reduce)

« The combined application of these functions
targets a surprisingly broad range of algorithms

» Google have used MapReduce to recreate their

index and it is now being used to keep the index
up to date

» Part of Amazon’s AWS package 1s a MapReduce
implementation based on Apache Hadoop

« Applying map, filter and fold to work with data
» Function construction using partial application

» Advanced applications of fold

— loop replacement
— map and filter as applications of fold

Standard higher order functions w/ partial application

« Partially applying map, filter and fold easily creates complex
new functions

» These functions are generic, so beware of “value restriction”
— when the partially applied parameter(s) restrict the types in any way,
the F# compiler will show a Value Restriction error

— either specify an explicit return type for the partially applied function,
or construct a syntactic function

Value restriction — let intSequenceAdder = Seq.fold (+) ©
Solution: specific — let intSequenceAdder : seq<int>->int =
Seq.fold (+) ©

return type

Value restriction —— let squareMapper = Seq.map
(fun x -> x * x)

Solution: let squareMapper 1 = Seq.map

syntactic function/ (fun x -> x * x) 1

« Some background on Functional Programming
(0:30)

 Basics of F# syntax (0:45)

« Advanced functions and functional techniques
(1:25)

» Discriminated unions (0:40)

» Exception handling and other loose ends (1:00)
» Map, Filter and Fold (0:30)

» Object Oriented Programming (1:00)

A quick look at some add-ons

Immutable classes (records)

« F# supports immutable classes (records)
— supports the functional ideal of having immutable data

 There is a cloning syntax that creates “modified
clones”

— this is used instead of making changes to data stored in

class instances

type Point =
{ X: float; Y: float }
member x.Shift(dx, dy) =
{ x with X = x.X + dx; Y = x.Y + dy }

Record types and constructed types

» Constructed types have constructors, like classes
In C#
» Record types do not have constructors

» Record types are instantiated through type
inference

type Point =
{ X: float; Y: float }
member x.Shift(dx, dy) =
{ x with X = x.X + dx; Y = x.Y + dy }

let pointl 10.3; Y = 11.4 }

Composition vs. Inheritance

« Gang of Four: favor composition over inheritance

« F# has syntactic and structural support for
deriving classes from other classes by means of
composition

« Implementation inheritance is equally well

supported

Superclass - 1' Component 1 '

Component 2

Subclass

« F# specific OO approaches

— immutable classes

— record types and constructed types
— modified cloning expressions

— object creation expressions

— interface instantiation

— composition instead of inheritance

— augmenting types

— declaring mutually dependent types and functions

e Standard class elements

Interface instantiation

 Interfaces are types with only abstract members

» Object creation expressions can be used to
“Instantiate interfaces”

An interface

type ——> type IInOut =

abstract Input: unit -> string

abstract Output: obj -> unit
Object creation . .
expression —> let implementer = { new IInOut with
instantiates the member Xx.Input() = Console.ReadLine()
interface member x.Output(o) = printfn "%A" o }

Type augmentation

» Types can be “opened” and extended

» This 1s especially useful for basic types and
discriminated unions

type Int32 with
member x.SpecialOutput() = printfn "Value is: %d" Xx

type Thing =
| OneThing of string
| OotherThing of int

type Thing with
member Xx.OutputThing() =
match x with
| OneThing(s) -»> printfn "Thing with a string: %s" s
| OotherThing(i) -> printfn "An int thing: %d" i

Mutually dependent types and functions

» Everything that is needed in the scope of a type or
function to create the element itselt, must exist
before the scope is entered

 Types and functions that are mutually dependent
must be declared in one block using the “and”

keyword

type TypeA() =
let b = TypeB()

and TypeB() =
let a = TypeA()

let rec functionA() = functionB()
and functionB() = functionA()

Mutable classes

e F# can create all standard class elements on
the .NET platform

« Implementation inheritance works just like C#
» Accessibility does not know “protected”
» Overloading members requires

OverloadIDAttribute

 Constructors and methods with optional
arguments are supported

« Mutable classes with standard .NET OO elements

— properties

— indexer properties

— overloaded methods
— accessibility modifiers

— implementation inheritance

 Properties can have get/set accessors

» Backing stores can use both kinds of mutability,
or any other storage mechanism

type Person(firstName: string, lastName: string) =
let mutable firstName = firstName
let mutable lastName = lastName

member p.FirstName with get() = firstName
and set(n) = firstName <- n

member p.LastName with get() = lastName
and set(n) = lastName <- n

Method overloading

« Methods can be overloaded on their parameter list
« Methods can also be overloaded on their return types

» Overloads with conflicting numbers of parameters
require the application of the attribute OverloadID

type FlexibleWalker() =
member x.Walk(a, b) =
printfn "Walking with %d and %d" a b
member x.Walk(a) =
printfn "Walking with %d" a
[<OverloadID("WalkWithString")>]
member x.Walk(s) =
printfn "Walking with the string '%s'" s

Accessibility modifiers

b > AN 14

« Modifiers are “public”, “private” and “internal”

« Modifiers can be specified with let-bindings,
modules, types, members, constructors, get/set
accessors and record type members

» Detfault accessibility is “public”

— lexical scope sometimes restricts, e.g. when accessing
let-bindings in classes

o All non-public entities in F# are “internal” in the
compiled .NET assembly

« Some background on Functional Programming
(0:30)

 Basics of F# syntax (0:45)

« Advanced functions and functional techniques
(1:25)

» Discriminated unions (0:40)

» Exception handling and other loose ends (1:00)
» Map, Filter and Fold (0:30)

» Object Oriented Programming (1:00)

e A quick look at some add-ons

Additional functionality

« LINQ

e Math (matrix, complex, others)
» Plotting

e Async

» Reflection add-ons

» FsLex/FsYacc
e Collections

» OCaml compatibility

» Some of the extensions are part of the F#
PowerPack

Optional demo, in case we're bored now

« ADO.NET and LINQ to SQL data access

« F# - great new option for .NET
development

« Complete feature set spanning functional as well
as imperative/object-oriented programming
 Lots of things we haven’t seen: active patterns,

workflows, ... and of course lots of applications of
functional programming

e I hope it was fun!

Thank you

Please feel free to contact me about the
content anytime.

oliver@sturmnet.org

SOD
THIS

brain burps for the tech Savvg llllllllll grammin g Techniques

Functional
Programming in C#

for Modern Pro jects

www.sodthis.com

mailto:oliver@sturmnet.org
mailto:oliver@sturmnet.org

