
Oliver Sturm
oliver@sturmnet.org
olivers@devexpress.com
http://www.sturmnet.org/blog

Oliver Sturm

Copyright © 2009 Oliver Sturm

!"#$%&!'"()&*+"&,-.&,./-&)#001

www.sodthis.com

A day of F#

4
4

1

Copyright © 2009 Oliver Sturm

Who’s that Oliver Sturm guy, anyway?

I am
Interested in programming languages,

databases and a whole bunch of other things
Microsoft MVP for C#

I do
Work for DevExpress as Director of Quality
Blog at http://www.sturmnet.org/blog
Podcast at http://www.sodthis.com

You should
Email me at oliver@sturmnet.org
Follow me on Twitter @olivers

http://www.sturmnet.org/blog
http://www.sturmnet.org/blog
http://www.sodthis.com
http://www.sodthis.com
mailto:oliver@sturmnet.org
mailto:oliver@sturmnet.org

Copyright © 2009 Oliver Sturm

Agenda

• Some background on Functional Programming
(0:30)

• Basics of F# syntax (0:45)
• Advanced functions and functional techniques

(1:25)
• Discriminated unions (0:40)
• Exception handling and other loose ends (1:00)
• Map, Filter and Fold (0:30)
• Object Oriented Programming (1:00)
• A quick look at some add-ons

Copyright © 2009 Oliver Sturm

• Functional programming is a paradigm
• FP tries to avoid shared state
• Pure functions

– results calculated only on the basis of input values
– pure functions don’t store or access information outside

themselves, avoid side effects

• Functions are first class citizens, enabling higher
order functions

• Higher order functions enable currying and
partial application

• Functions are building blocks

The concept of Functional Programming

Copyright © 2009 Oliver Sturm

Avoiding side effects and shared state

• Debugging benefits from this approach
• Testing benefits as well
• Scalability becomes easy

– no locking of data
– no manual analysis of code structure to find scalable

parts

• Automatic optimization becomes possible
• Maintainability improves drastically

Copyright © 2009 Oliver Sturm

Avoiding mutable data

• Mutable data requires the developer to doubt, at
any point in his code, everything that has
happened before

int	
 a	
 =	
 37;
int	
 b	
 =	
 42;
int	
 c	
 =	
 a	
 *	
 b;

b	
 =	
 50;	

The statement is correct here

Now the above statement
is wrong

Copyright © 2009 Oliver Sturm

The reality is that...

• F# is a .NET language that supports several different
programming paradigms

• Automatic parallelization does not exist (yet?) on
the .NET Framework
– but Parallel Extensions to the .NET Framework will be part

of .NET 4.0
– the success of Erlang shows the reality of scalability, stability

and maintainability claims, Ericsson reports 99.9999999%
uptime (down 1 second in 30 years)

• Automatic optimization does not exist yet either
• A combination of approaches results in the best code for

a particular purpose
• The more flexible a programming language is, the easier

it is to combine approaches

Copyright © 2009 Oliver Sturm

What is F#?

• A .NET language with Visual Studio integration
• A hybrid language, supporting functional as well

as imperative and object oriented paradigms
• Type safe
• Widely cross-compilable with Ocaml
• Scriptable
• F# is being “productized” for Visual Studio 2010

Copyright © 2009 Oliver Sturm

Why is F# interesting?

• Testbed for features we see in C# later
– past: Generics were introduced to .NET at the initiative

of Don Syme
– past: LINQ has its roots in standard map/reduce/filter

approaches
– .NET 4.0 will have Lazy and Tuple types

• Optimized syntax for Functional Programming
allows easier combination of approaches

• Things that go beyond C# - metaprogramming,
type inference, …

Copyright © 2009 Oliver Sturm

For whom is F# interesting?

• FP in general is good at calculating things –
academics, financial sector, business logic, …

• MS wants to drive VS adoption in technical
computing markets and gain academic mindshare

• Big banks have been working on F# projects for a
long time, some were waiting for the
productization commitment

• Systems like Erlang show benefits of concurrency
strategies that FP promotes

• F# as a multi-paradigm language can be
interesting to everybody as a more flexible
alternative to other .NET languages

Copyright © 2009 Oliver Sturm

What do you need to get started?

• F# CTP for VS 2008 available: http://
research.microsoft.com/en-us/um/cambridge/
projects/fsharp/

• The latest release is the May 2009 CTP
• VS 2010 beta 1 contains a corresponding state, but

not the F# powerpack
• Expect changes at least until Visual Studio 2010 is

finalized
• Packages to run F# in mono are also available

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

Copyright © 2009 Oliver Sturm

Agenda

• Some background on Functional Programming
(0:30)

• Basics of F# syntax (0:45)
• Advanced functions and functional techniques

(1:25)
• Discriminated unions (0:40)
• Exception handling and other loose ends (1:00)
• Map, Filter and Fold (0:30)
• Object Oriented Programming (1:00)
• A quick look at some add-ons

Copyright © 2009 Oliver Sturm

Demo

• Immutable values, data types and type inference
• Tuples, lists and option types
• Match expressions
• Mutable values and reference cells
• Functions
• Code structure and formatting
• Flow control using “if” and “for”

Copyright © 2009 Oliver Sturm

• Basic F# types are: (s)byte, (u)int16, (u)int32, (u)
int64, string, single, double, char, (u)nativeint,
bool, decimal, bigint and unit

• Literals can have postfixes denoting their types:
– y (byte), s (int16), l (int32), n (nativeint), L (int64) for

integer types, combine these with u for an unsigned
value (uy, us, …)

– f (float), I (bigint), m (decimal)

• Integer types can also use the prefixes 0x, 0o and
0b to represent numbers in hexadecimal, octal
and binary format

Basic types

Copyright © 2009 Oliver Sturm

Tuples

• Tuples combine other types into a new type, e.g.
int*string*int to combine an int, a string
and another int

• Tuple Literals in code use parentheses:
(10,	
 “text”,	
 40)

• Tuples allow the construction of combined
“record” types on the fly, without prior
declaration

• Tuples don’t add behavior, they are “just” a
convenient combined data type

Copyright © 2009 Oliver Sturm

Working with .NET data types

• All .NET Framework data types are available for
use in F#

• Instantiating them through their constructors
requires a call like this:
let	
 sb	
 =	
 StringBuilder()

• Convention: if the type implements IDisposable,
use an explicit “new” keyword:
let	
 form	
 =	
 new	
 Form()

Copyright © 2009 Oliver Sturm

Option Types

• Option types represent the notion that values
might not “have a value”

• A value of type Option<T> can be assigned either
Some(T) or None

• Similar concept to the idea of “null” in many
imperative languages

Copyright © 2009 Oliver Sturm

Lists

• Lists in F# are immutable data structures,
implemented as singly-linked lists

• Literals in code use brackets: [1,	
 2,	
 3]

• Lists are typed, so the types of contained elements
must be compatible

• The empty list is represented as []

• The operators :: and @ are used to prepend an
element to a list and concatenate two lists,
respectively
– both these operators return a new list object – lists are

immutable

Copyright © 2009 Oliver Sturm

Match Expressions

• Match expressions apply one or more patterns to
a value

• Checks can test for literals or other values
• Complex tests can test for Some() vs. None to

support option types, empty lists and hd	
 ::	
 tl
constructs to support lists

• Decomposing of values in match expressions is
also possible

Copyright © 2009 Oliver Sturm

Mutability

• Values are immutable by default
• Mutable values are supported through the
mutable keyword and the “ref cells” technique

• Only ref cells can be used in closures
• Assignment operators differ depending on the

“kind” of mutability used
– assignments for “mutable” types use <-­‐

– with ref cells, assignments use :=

• Immutability can be shallow
– the built-in array type is not immutable itself

Copyright © 2009 Oliver Sturm

Functions

• Functions are values themselves
• Functions are in curried format automatically
• Calls to functions separate parameters by spaces
• Indentation defines the structure of a function’s

body
• The result of the last statement in the body of a

function is also the result of the function

Copyright © 2009 Oliver Sturm

Agenda

• Some background on Functional Programming
(0:30)

• Basics of F# syntax (0:45)
• Advanced functions and functional

techniques (1:25)
• Discriminated unions (0:40)
• Exception handling and other loose ends (1:00)
• Map, Filter and Fold (0:30)
• Object Oriented Programming (1:00)
• A quick look at some add-ons

Copyright © 2009 Oliver Sturm

Demo

• Recursive functions
• Lambda expressions
• Nested functions
• Higher order functions

Copyright © 2009 Oliver Sturm

• The rec keyword is required to denote a function
as recursive
– if rec is missing, the function’s name is not in scope in

its own body

• Tail recursion is applied automatically if the
recursive call is the last statement executed in a
recursive function

Recursive functions

Copyright © 2009 Oliver Sturm

Lambda expressions

• Lambda expressions use the fun keyword and the
-­‐> (goes-to) operator

• A lambda expression assigned to a value results in
the same function accessible through that value as
“let”-style function creation

• Lambda expressions are “anonymous functions”
• Lambda expressions cannot be recursive

Copyright © 2009 Oliver Sturm

Nested functions

• Functions do not have to be on “top level” scope
• Values assigned inside functions can also be

functions
• The scope of nested functions is the same as for

any other value assigned on the same “level”

Copyright © 2009 Oliver Sturm

Higher order functions

• Higher order functions take other functions as
parameters or return them as return values

• Any parameter passed to a function in F# can be a
function itself

• Functions can be return values of functions
• Lambda expressions can be used to pass functions

“in-line”
• Functions referred to by the values they have been

assigned to can also be used to pass as parameters

Copyright © 2009 Oliver Sturm

Nested calls and chaining (piping)

• Calls to functions delimit parameters with spaces
• Use parentheses to resolve ambiguity as well as

readability issues:
mult	
 (add	
 10	
 30)	
 40

• Pipes append the result of one function to the
parameter list of another:
add	
 10	
 30	
 |>	
 mult	
 40

• Pipes result in a more natural order of calls in
complex nested statements

Copyright © 2009 Oliver Sturm

Composition

Assuming B	
 =	
 f1(A),	
 C	
 =	
 f2(B)
→ C	
 =	
 f2(f1(A))

let	
 square	
 x	
 =	
 x	
 *	
 x

let	
 triple	
 x	
 =	
 3	
 *	
 x
...
let	
 a	
 =	
 10
let	
 b	
 =	
 square	
 a
let	
 c	
 =	
 triple	
 b
...
let	
 c	
 =	
 triple	
 (square	
 a)

Getting from a to c
step by step

Getting from a to c
by nesting calls

Copyright © 2009 Oliver Sturm

Demo

• Nested calls, chaining
• Composition

Copyright © 2009 Oliver Sturm

• Closures capture values that are used by
functions, when these functions leave their scope

Closures

let	
 createCalculation	
 val	
 =
	
 	
 	
 	
 let	
 calc	
 x	
 =	
 val	
 *	
 x
	
 	
 	
 	

	
 	
 	
 	
 calc

The function
calc needs the
value val to
perform its
calculation

The function calc
leaves the scope
of the value val

Copyright © 2009 Oliver Sturm

Demo

• Closures

Copyright © 2009 Oliver Sturm

• Currying is the process of transforming a function
with multiple parameters into a chain of functions
that each take one parameter and return the next
function, until on the deepest level the calculation
can be performed with all parameters.

Currying

let	
 add	
 x	
 y	
 =	
 x	
 +	
 y let	
 add	
 x	
 =
	
 	
 	
 	
 (fun	
 y	
 -­‐>	
 x	
 +	
 y)

Copyright © 2009 Oliver Sturm

Demo

• Curried format functions
• Partial application
• Functional precomputation
• Memoization

Copyright © 2009 Oliver Sturm

• In curried format, functions always take exactly
one parameter

• Functions might return other functions to gather
additional parameters

• The last function in the “chain” can perform the
calculation using all parameter values

• Closures are used to store parameter values

Curried format functions

Copyright © 2009 Oliver Sturm

Partial application

• Applying a function partially means passing in
some, but not all, parameters needed by the
function

• Due to the curried format, partial application of a
function means that another function is returned

• Partial application is one approach in the area of
“function construction”, i.e. creating new
functions out of existing ones

Copyright © 2009 Oliver Sturm

Functional precomputation

• Precomputation is an approach where expensive
calculations are performed in advance of an
algorithm run

• Precomputed values are stored for later use
• Functional precomputation means using a

function, or a closure, as a storage location
– no “external” storage is therefore needed

• Since curried functions are automatic in F#, the
approach is very elegant in this language

Copyright © 2009 Oliver Sturm

Memoization

• Memoization is a caching pattern that stores
values which have been calculated once for later
reuse

• It is possible to memoize as a wrapper function
• “Deep” memoization, i.e. memoization of a chain

of curried functions, requires Reflection
• Memoizing via a wrapper functions is meant not

to change the algorithm
– when the function is recursive, memoization “from the

outside” is typically not possible

Copyright © 2009 Oliver Sturm

Agenda

• Some background on Functional Programming
(0:30)

• Basics of F# syntax (0:45)
• Advanced functions and functional techniques

(1:25)
• Discriminated unions (0:40)
• Exception handling and other loose ends (1:00)
• Map, Filter and Fold (0:30)
• Object Oriented Programming (1:00)
• A quick look at some add-ons

Copyright © 2009 Oliver Sturm

• Discriminated unions are data types
• In simple cases discriminated unions behave like

enums
• Their uses cases are similar to those of enums

– case/kind distinction

Simple discriminated unions

type	
 MemberKind	
 =	

	
 	
 	
 	
 |	
 Method	
 =	
 1
	
 	
 	
 	
 |	
 Property	
 =	
 2
	
 	
 	
 	
 |	
 Field	
 =	
 3

Copyright © 2009 Oliver Sturm

Elements that carry data
• Elements of discriminated unions can carry data
• In this case, the compiler generates classes

automatically

class	
 Product	
 {	
 ...	
 }
class	
 OwnProduct	
 :	
 Product	
 {	
 ...	
 }
class	
 RemoteReference	
 :	
 Product	
 {	
 ...	
 }

type	
 Product	
 =	

	
 	
 	
 	
 |	
 OwnProduct	
 of	
 string
	
 	
 	
 	
 |	
 RemoteReference	
 of	
 int

Copyright © 2009 Oliver Sturm

Data can be complex

• The data carried by elements may be of any valid
F# type

• Use of simple tuples and other discriminated
unions results in powerful data structures

type	
 Product	
 =	

	
 	
 	
 	
 |	
 OwnProduct	
 of	
 string
	
 	
 	
 	
 |	
 RemoteReference	
 of	
 int

type	
 StoreBooking	
 =	

	
 	
 	
 	
 |	
 Incoming	
 of	
 Product	
 *	
 Count
	
 	
 	
 	
 |	
 Outgoing	
 of	
 Product	
 *	
 Count

Copyright © 2009 Oliver Sturm

Definitions can be recursive

• Type definitions for discriminated unions can
refer to themselves

• Complex hierarchies can be created using
recursive discriminated unions

type	
 Control	
 =	

	
 	
 	
 	
 |	
 Button	
 of	
 Caption
	
 	
 	
 	
 |	
 CheckButton	
 of	
 Caption	
 *	
 Checked
	
 	
 	
 	
 |	
 Edit	
 of	
 Caption	
 *	
 StrContent
	
 	
 	
 	
 |	
 Container	
 of	
 Control	
 list

Copyright © 2009 Oliver Sturm

Demo

• Discriminated unions
– simple unions / enums
– data-carrying members
– members with complex types
– recursive unions
– using match expressions to analyze union hierarchies
– implementation of a linked list using discriminated

unions

Copyright © 2009 Oliver Sturm

Agenda

• Some background on Functional Programming
(0:30)

• Basics of F# syntax (0:45)
• Advanced functions and functional techniques

(1:25)
• Discriminated unions (0:40)
• Exception handling and other loose ends

(1:00)
• Map, Filter and Fold (0:30)
• Object Oriented Programming (1:00)
• A quick look at some add-ons

Copyright © 2009 Oliver Sturm

• F# needs to be able to handle exceptions to be
compatible with .NET

• try/with and try/finally are available, same as try/
catch and try/finally in C#

• Exception handling blocks can be used in
expressions

• Pattern matching applied to exceptions makes
filtering very flexible

• Use the exception keyword to create custom
exceptions

Exception Handling

Copyright © 2009 Oliver Sturm

Handling IDisposable

• “using” is a higher order function that disposes at
the end of the function it gets passed

• “use" is a keyword that disposes at the end of the
current code block

let	
 writeFile()	
 =	

	
 	
 	
 	
 using	
 (File.CreateText("file.txt"))
	
 	
 	
 	
 	
 	
 	
 	
 (fun	
 file	
 -­‐>	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 file.WriteLine("Stuff	
 in	
 the	
 file"))

let	
 writeFile2()	
 =	

	
 	
 	
 	
 use	
 file	
 =	
 File.CreateText("file2.txt")
	
 	
 	
 	
 file.WriteLine("Stuff	
 in	
 other	
 file")

Copyright © 2009 Oliver Sturm

Demo

• Catching exceptions
• Creating custom exceptions
• Raising and rethrowing exception
• try/finally
• use
• using

Copyright © 2009 Oliver Sturm

• Exceptions can be caught using try/with blocks
• These blocks can appear on their own or in expressions

Catching exceptions

try
	
 	
 	
 	
 let	
 foo	
 =	
 10	
 /	
 0
	
 	
 	
 	
 printfn	
 "%d"	
 foo
with
	
 	
 	
 	
 |	
 :?	
 InvalidOperationException	
 as	
 e	
 -­‐>	

	
 	
 	
 	
 	
 	
 	
 	
 	
 printf	
 "InvalidOperationException:	
 %s"	
 e.Message
	
 	
 	
 	
 |	
 e	
 -­‐>	
 printfn	
 "Other	
 exception:	
 %s"	
 e.Message

let	
 result	
 =	

	
 	
 	
 	
 try
	
 	
 	
 	
 	
 	
 	
 	
 Some(10	
 /	
 0)
	
 	
 	
 	
 with
	
 	
 	
 	
 	
 	
 	
 	
 |	
 _	
 -­‐>	
 None

Copyright © 2009 Oliver Sturm

Creating custom exceptions

• The “exception” keyword is used to create custom
exceptions

• Implementation of the exception is automatic,
only the type of the data it carries needs to be
specified

exception	
 MyOwnException	
 of	
 string	
 *	
 int

try
	
 	
 	
 	
 raise	
 (MyOwnException("An	
 error	
 has	
 occurred",	
 42))
with
	
 	
 	
 	
 |	
 MyOwnException(strVal,	
 intVal)	
 -­‐>	

	
 	
 	
 	
 	
 	
 	
 	
 printfn	
 "Got	
 exception	
 with	
 str='%s',	
 int=%d"	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 strVal	
 intVal

Copyright © 2009 Oliver Sturm

Demo

• Casting up
• Casting down
• Using match expressions for type checking
• Converting numeric data types

Copyright © 2009 Oliver Sturm

• Lists in F# are immutable single-linked lists
• The implementation is based on discriminated

unions
• List comprehension syntax

– [] is the empty list

– [
 b	
 ..	
 s	
 ..	
 e	
] initializes a list with values starting
with b, stepping by s and ending at e

– [
 for	
 …	
 -­‐>	
 …	
] initializes a list with a custom
calculation

• The module Microsoft.FSharp.Collections.List
makes further helper functionality available

• hd	
 ::	
 tl syntax is available in match expressions

Lists

Copyright © 2009 Oliver Sturm

Sequences

• F# sequences are based on IEnumerable<T>

• Evaluation is lazy, like an iterator in C#, or more
generally, a continuation

• List comprehensions similar to lists are available,
but using curly braces {	
 …	
 }

• The seq	
 {	
 …	
 } workflow can be used for more
complex value creation
– the workflow uses the yield and yield! keywords to

“pass back” data to the outer context

• The module Microsoft.FSharp.Collections.Seq has
more functionality

Copyright © 2009 Oliver Sturm

Demo

• Lists
• List handling

– head/tail
– cons, append

• Sequences

Copyright © 2009 Oliver Sturm

Agenda

• Some background on Functional Programming
(0:30)

• Basics of F# syntax (0:45)
• Advanced functions and functional techniques

(1:25)
• Discriminated unions (0:40)
• Exception handling and other loose ends (1:00)
• Map, Filter and Fold (0:30)
• Object Oriented Programming (1:00)
• A quick look at some add-ons

Copyright © 2009 Oliver Sturm

• Available in almost all programming languages/
runtimes, sometimes with varying names

• Available in LINQ as Select, Filter and Aggregate
– functionality provided by map, filter and fold is similar

to database querying functionality

• F# implementations List.XXX are for lists,
Seq.XXX are for sequences

• Using function construction, these functions form
the basis of new functionality

Map, Filter and Fold

Copyright © 2009 Oliver Sturm

Map

• Map applies a function to each element in a list,
returning a list of results

<transformation function>

Copyright © 2009 Oliver Sturm

Filter

• Filter applies a predicate function to each element
in a list, returning the elements that fit the
predicate

<filter function>

Copyright © 2009 Oliver Sturm

Fold

• Fold aggregates values in a list using an
aggregation function

<aggregation function>

4

Copyright © 2009 Oliver Sturm

Google MapReduce

• Google MapReduce is a parallel computation
framework based on map and fold (reduce)

• The combined application of these functions
targets a surprisingly broad range of algorithms

• Google have used MapReduce to recreate their
index and it is now being used to keep the index
up to date

• Part of Amazon’s AWS package is a MapReduce
implementation based on Apache Hadoop

Copyright © 2009 Oliver Sturm

Demo

• Applying map, filter and fold to work with data
• Function construction using partial application
• Advanced applications of fold

– loop replacement
– map and filter as applications of fold

Copyright © 2009 Oliver Sturm

• Partially applying map, filter and fold easily creates complex
new functions

• These functions are generic, so beware of “value restriction”
– when the partially applied parameter(s) restrict the types in any way,

the F# compiler will show a Value Restriction error
– either specify an explicit return type for the partially applied function,

or construct a syntactic function

Standard higher order functions w/ partial application

let	
 intSequenceAdder	
 =	
 Seq.fold	
 (+)	
 0
let	
 intSequenceAdder	
 :	
 seq<int>-­‐>int	
 =	

	
 	
 Seq.fold	
 (+)	
 0

let	
 squareMapper	
 =	
 Seq.map	

	
 	
 (fun	
 x	
 -­‐>	
 x	
 *	
 x)
let	
 squareMapper	
 l	
 =	
 Seq.map	

	
 	
 (fun	
 x	
 -­‐>	
 x	
 *	
 x)	
 l

Value restriction

Solution: specific
return type

Value restriction

Solution:
syntactic function

Copyright © 2009 Oliver Sturm

Agenda

• Some background on Functional Programming
(0:30)

• Basics of F# syntax (0:45)
• Advanced functions and functional techniques

(1:25)
• Discriminated unions (0:40)
• Exception handling and other loose ends (1:00)
• Map, Filter and Fold (0:30)
• Object Oriented Programming (1:00)
• A quick look at some add-ons

Copyright © 2009 Oliver Sturm

• F# supports immutable classes (records)
– supports the functional ideal of having immutable data

• There is a cloning syntax that creates “modified
clones”
– this is used instead of making changes to data stored in

class instances

Immutable classes (records)

type	
 Point	
 =	

	
 	
 	
 	
 {	
 X:	
 float;	
 Y:	
 float	
 }
	
 	
 	
 	
 member	
 x.Shift(dx,	
 dy)	
 =	

	
 	
 	
 	
 	
 	
 	
 	
 {	
 x	
 with	
 X	
 =	
 x.X	
 +	
 dx;	
 Y	
 =	
 x.Y	
 +	
 dy	
 }

Copyright © 2009 Oliver Sturm

Record types and constructed types

• Constructed types have constructors, like classes
in C#

• Record types do not have constructors
• Record types are instantiated through type

inference

type	
 Point	
 =	

	
 	
 	
 	
 {	
 X:	
 float;	
 Y:	
 float	
 }
	
 	
 	
 	
 member	
 x.Shift(dx,	
 dy)	
 =	

	
 	
 	
 	
 	
 	
 	
 	
 {	
 x	
 with	
 X	
 =	
 x.X	
 +	
 dx;	
 Y	
 =	
 x.Y	
 +	
 dy	
 }

let	
 point1	
 =	
 {	
 X	
 =	
 10.3;	
 Y	
 =	
 11.4	
 }

Copyright © 2009 Oliver Sturm

Composition vs. Inheritance

• Gang of Four: favor composition over inheritance
• F# has syntactic and structural support for

deriving classes from other classes by means of
composition

• Implementation inheritance is equally well
supported

Superclass

Subclass

Class

Component 2

Component 1* 1

*

1

Copyright © 2009 Oliver Sturm

Demo

• F# specific OO approaches
– immutable classes
– record types and constructed types
– modified cloning expressions
– object creation expressions
– interface instantiation
– composition instead of inheritance
– augmenting types
– declaring mutually dependent types and functions

• Standard class elements

Copyright © 2009 Oliver Sturm

• Interfaces are types with only abstract members
• Object creation expressions can be used to

“instantiate interfaces”

Interface instantiation

type	
 IInOut	
 =	

	
 	
 	
 	
 abstract	
 Input:	
 unit	
 -­‐>	
 string
	
 	
 	
 	
 abstract	
 Output:	
 obj	
 -­‐>	
 unit

let	
 implementer	
 =	
 {	
 new	
 IInOut	
 with	

	
 	
 	
 	
 	
 	
 	
 	
 member	
 x.Input()	
 =	
 Console.ReadLine()
	
 	
 	
 	
 	
 	
 	
 	
 member	
 x.Output(o)	
 =	
 printfn	
 "%A"	
 o	
 }

An interface
type

Object creation
expression
instantiates the
interface

Copyright © 2009 Oliver Sturm

Type augmentation

• Types can be “opened” and extended
• This is especially useful for basic types and

discriminated unions

type	
 Int32	
 with	

	
 	
 	
 	
 member	
 x.SpecialOutput()	
 =	
 printfn	
 "Value	
 is:	
 %d"	
 x

type	
 Thing	
 =
	
 	
 	
 	
 |	
 OneThing	
 of	
 string
	
 	
 	
 	
 |	
 OtherThing	
 of	
 int

type	
 Thing	
 with	

	
 	
 	
 	
 member	
 x.OutputThing()	
 =	

	
 	
 	
 	
 	
 	
 	
 	
 match	
 x	
 with	

	
 	
 	
 	
 	
 	
 	
 	
 |	
 OneThing(s)	
 -­‐>	
 printfn	
 "Thing	
 with	
 a	
 string:	
 %s"	
 s
	
 	
 	
 	
 	
 	
 	
 	
 |	
 OtherThing(i)	
 -­‐>	
 printfn	
 "An	
 int	
 thing:	
 %d"	
 i

Copyright © 2009 Oliver Sturm

Mutually dependent types and functions

• Everything that is needed in the scope of a type or
function to create the element itself, must exist
before the scope is entered

• Types and functions that are mutually dependent
must be declared in one block using the “and”
keyword

type	
 TypeA()	
 =	

	
 	
 	
 	
 let	
 b	
 =	
 TypeB()

and	
 TypeB()	
 =
	
 	
 	
 	
 let	
 a	
 =	
 TypeA()

let	
 rec	
 functionA()	
 =	
 functionB()
and	
 functionB()	
 =	
 functionA()

Copyright © 2009 Oliver Sturm

Mutable classes

• F# can create all standard class elements on
the .NET platform

• Implementation inheritance works just like C#
• Accessibility does not know “protected”
• Overloading members requires

OverloadIDAttribute
• Constructors and methods with optional

arguments are supported

Copyright © 2009 Oliver Sturm

Demo

• Mutable classes with standard .NET OO elements
– properties
– indexer properties
– overloaded methods
– accessibility modifiers
– implementation inheritance

Copyright © 2009 Oliver Sturm

• Properties can have get/set accessors
• Backing stores can use both kinds of mutability,

or any other storage mechanism

Properties

type	
 Person(firstName:	
 string,	
 lastName:	
 string)	
 =	
 	

	
 	
 	
 	
 let	
 mutable	
 firstName	
 =	
 firstName
	
 	
 	
 	
 let	
 mutable	
 lastName	
 =	
 lastName
	
 	
 	
 	

	
 	
 	
 	
 member	
 p.FirstName	
 with	
 get()	
 =	
 firstName	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 and	
 set(n)	
 =	
 firstName	
 <-­‐	
 n
	
 	
 	
 	
 member	
 p.LastName	
 with	
 get()	
 =	
 lastName	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 and	
 set(n)	
 =	
 lastName	
 <-­‐	
 n

Copyright © 2009 Oliver Sturm

Method overloading

• Methods can be overloaded on their parameter list
• Methods can also be overloaded on their return types
• Overloads with conflicting numbers of parameters

require the application of the attribute OverloadID

type	
 FlexibleWalker()	
 =	

	
 	
 	
 	
 member	
 x.Walk(a,	
 b)	
 =	

	
 	
 	
 	
 	
 	
 	
 	
 printfn	
 "Walking	
 with	
 %d	
 and	
 %d"	
 a	
 b
	
 	
 	
 	
 member	
 x.Walk(a)	
 =	

	
 	
 	
 	
 	
 	
 	
 	
 printfn	
 "Walking	
 with	
 %d"	
 a
	
 	
 	
 	
 [<OverloadID("WalkWithString")>]
	
 	
 	
 	
 member	
 x.Walk(s)	
 =	

	
 	
 	
 	
 	
 	
 	
 	
 printfn	
 "Walking	
 with	
 the	
 string	
 '%s'"	
 s	

Copyright © 2009 Oliver Sturm

Accessibility modifiers

• Modifiers are “public”, “private” and “internal”
• Modifiers can be specified with let-bindings,

modules, types, members, constructors, get/set
accessors and record type members

• Default accessibility is “public”
– lexical scope sometimes restricts, e.g. when accessing

let-bindings in classes

• All non-public entities in F# are “internal” in the
compiled .NET assembly

Copyright © 2009 Oliver Sturm

Agenda

• Some background on Functional Programming
(0:30)

• Basics of F# syntax (0:45)
• Advanced functions and functional techniques

(1:25)
• Discriminated unions (0:40)
• Exception handling and other loose ends (1:00)
• Map, Filter and Fold (0:30)
• Object Oriented Programming (1:00)
• A quick look at some add-ons

Copyright © 2009 Oliver Sturm

• LINQ
• Math (matrix, complex, others)
• Plotting
• Async
• Reflection add-ons
• FsLex/FsYacc
• Collections
• OCaml compatibility
• Some of the extensions are part of the F#

PowerPack

Additional functionality

Copyright © 2009 Oliver Sturm

Optional demo, in case we’re bored now

• ADO.NET and LINQ to SQL data access

Copyright © 2009 Oliver Sturm

Summary

• F# - great new option for .NET
development

• Complete feature set spanning functional as well
as imperative/object-oriented programming

• Lots of things we haven’t seen: active patterns,
workflows, … and of course lots of applications of
functional programming

• I hope it was fun!

Copyright © 2009 Oliver Sturm

Thank you

Please feel free to contact me about the
content anytime.

oliver@sturmnet.org

!"#$%&!'"()&*+"&,-.&,./-&)#001

www.sodthis.com

mailto:oliver@sturmnet.org
mailto:oliver@sturmnet.org

