Functional Programming in F#

Oliver Sturm :
oliver@sturmnet.org Qlicec Stum

olivers@devexpress.com e 1. i @nl\:hctr\??oft
http://www.sturmnet.org/blog siibld™n Professional




I am

Interested in programming languages,
databases and a whole bunch of other things

Microsoft MVP for C#
I do

Work for Developer Express as a Technical
Evangelist and Lead Program Manager

Blog at http://www.sturmnet.org/blog
You should

Wh that Oli St , ? ,

Email me at oliver@sturmnet.org




e What is F#?

« What is Functional Programming
all about and why is it suddenly
interesting?

* Your choice of:
— F# syntax introduction

— The almost a business application
demo

— Advanced functions and functional
techniques

— Discriminated unions




What is F#7?

« A .NET language with Visual Studio
integration

A hybrid language, supporting functional as
well as imperative and object oriented
paradigms

Type safe
Widely cross-compilable with Ocaml
Scriptable

F# is being “productized” for Visual Studio
2010




What do you need to get started?

» F# is currently a separate download,
available via
http://research.microsoft.com/fsharp/
fsharp.aspx

» The latest release is the September 2008
CTP

« Expect regular changes until Visual Studio
2010 is finalized

* F# is not yet part of public Visual Studio
2010 pre-releases, but it will be in the future




The concept of Functional Programming

» Functional programming is a paradigm
» FP tries to avoid shared state

 Pure functions
— results calculated only on the basis of input values
— pure functions don’t store or access information

outside themselves, avoid side effects

Functions are first class citizens, enabling
higher order functions

Higher order functions enable currying and
partial application

Functions are building blocks




Avoiding side effects and shared state

» Debugging benefits from this approach
» Testing benefits as well

 Scalability becomes easy
—no locking of data

— no manual analysis of code structure to find
scalable parts

Automatic optimization becomes possible
Maintainability improves drastically




Parallelization is the trigger

« Writing code without side effects makes
parallelization easy

 Parallelization can be fully automatic... not
yet in F# though

» Functional approaches offer many solutions

» Functional programming as a paradigm is
not language specific, but the more language
support there is, the easier it becomes




F# is a .NET language that supports several different
programming paradigms

Automatic parallelization does not exist (yet?) on
the .NET Framework

— but Parallel Extensions to the .NET Framework will be
part of NET 4.0

— the success of Erlang shows the reality of scalability,
stability and maintainability claims, Ericsson reports
09.9999999% uptime (down 1 second in 30 years)

Automatic optimization does not exist yet either

A combination of approaches results in the best code
for a particular purpose

The more flexible a programming language is, the
easier it is to combine approaches

Copyright © 2006-2009 Oliver Sturm



A (almost) real-world business app
he really ugly version

he somewhat better version

he seriously pretty good version




e Recursive functions

« Lambda expressions

 Nested functions
« Higher order functions




Recursive functions

* The “rec” keyword is required to denote a
function as recursive

—if “rec” is missing, the function’s name is not in
scope in its own body

» Tail recursion is applied automatically if the
recursive call is the last statement executed
In a recursive function




Lambda expressions

« Lambda expressions use the “fun” keyword
and the “->” (goes-to) operator

« A lambda expression assigned to a value
results in the same function accessible
through that value as “let”-style function
creation

« Lambda expressions are “anonymous
functions”

« Lambda expressions cannot be recursive




Nested functions

» Functions do not have to be on “top level”
scope

 Values assigned inside functions can also be
functions

* The scope of nested functions is the same as
for any other value assigned on the same
“level”




Higher order functions take other functions
as parameters or return them as return
values

Any parameter passed to a function in F#
can be a function itself

Functions can be return values of functions

Lambda expressions can be used to pass
functions “in-line”

Functions referred to by the values they
have been assigned to can also be used to
pass as parameters

Copyright © 2006-2009 Oliver Sturm



Nested calls and chaining (piping)

» Calls to functions delimit parameters with
spaces

« Use parentheses to resolve ambiguity as well
as readability issues:
mult (add 10 30) 40

 Pipes append the result of one function to
the parameter list of another:
add 10 30 |> mult 40

* Pipes result in a more natural order of calls
in complex nested statements




« Assuming B = f1(A), C = f2(B)
— C = f2(f1(A))

let square x

let triple x

S , let a = 10
etting from ato c —
step by step \ b = Sql.Jar‘e
c = triple
Getting from a to c by e
nesting \

calls

triple (square a)




* Nested calls, chaining

« Composition




Closures

* Closures capture values that are used by
functions, when these functions leave their

scope

let createCalculation val =

— *
The function calc let calc x = val X

needs the value
val to perform its calc

calculation /

The function
leaves the scope
of the value val




e Closures




 Currying is the process of transforming a
function with multiple parameters into a
chain of functions that each take one
parameter and return the next function,

until on the deepest level the calculation can
be performed with all parameters.

let add Xy = x +y let add x =
(funy -> x +Yy)




 Curried format functions
 Partial application

« Functional precomputation

e Memoization




Curried format functions

 In curried format, functions always take
exactly one parameter

* Functions might return other functions to
gather additional parameters

 The last function in the “chain” can perform
the calculation using all parameter values

* Closures are used to store parameter values




Partial application

 Applying a function partially means passing
in some, but not all, parameters needed by
the function

* Due to the curried format, partial
application of a function means that another
function is returned

 Partial application is one approach in the
area of “function construction”, i.e. creating
new functions out of existing ones




Functional precomputation

Precomputation is an approach where
expensive calculations are performed in
advance of an algorithm run

Precomputed values are stored for later use

Functional precomputation means using a
function, or a closure, as a storage location

— no “external” storage is therefore needed

Since curried functions are automatic in F#,
the approach is very elegant in this language




Memoization

« Memoization is a caching pattern that stores
values which have been calculated once for
later reuse

It is possible to memoize as a wrapper function

* “Deep” memoization, i.e. memoization of a
chain of curried functions, requires Reflection

« Memoizing via a wrapper functions is meant
not to change the algorithm

— when the function is recursive, memoization “from
the outside” is typically not possible




Simple discriminated unions

 Discriminated unions are data types

 In simple cases discriminated unions behave
like enums

 Their uses cases are similar to those of
enums

— case/kind distinction

type MemberKind =
Method = 1

Property =

Field = 3

2




Elements that carry data

» Elements of discriminated unions can carry
data

 In this case, the compiler generates classes
automatically

type Product =
| OwnProduct of string
| RemoteReference of int

\

class Product { ... }
class OwnProduct : Product { ... }
class RemoteReference : Product { ... }




Data can be complex

» The data carried by elements may be of any
valid F# type

» Use of simple tuples and other discriminated
unions results in powerful data structures

type Product =
| ownProduct of string
| RemoteReference of int

type StoreBooking =
| Incoming of Product * Count
| Outgoing of Product * Count




Definitions can be recursive

« Type definitions for discriminated unions
can refer to themselves

« Complex hierarchies can be created using
recursive discriminated unions

type Control =

Button of Caption

CheckButton of Caption * Checked
Edit of Caption * StrContent
Container of Control list




* Discriminated unions
— simple unions / enums
— data-carrying members
— members with complex types
— recursive unions

— using match expressions to analyze union
hierarchies

— implementation of a linked list using
discriminated unions




Summary

» F# - great new option for .NET
development

* Complete feature set spanning functional as
well as imperative/object-oriented

programming
I hope it was fun!




Please feel free to contact me about the
content anytime.

oliver@sturmnet.org

Listen to my podcast: http://www.sodthis.com

SOD
THIS

brain burps for the tech savvy
www.sodthis.com




