
Copyright © 2006-2009 Oliver Sturm

Oliver Sturm
oliver@sturmnet.org
olivers@devexpress.com
http://www.sturmnet.org/blog

Oliver Sturm

Functional Programming in F#

Copyright © 2006-2009 Oliver Sturm

Who’s that Oliver Sturm guy, anyway?

I am
Interested in programming languages,

databases and a whole bunch of other things
Microsoft MVP for C#

I do
Work for Developer Express as a Technical

Evangelist and Lead Program Manager
Blog at http://www.sturmnet.org/blog

You should
Email me at oliver@sturmnet.org

Copyright © 2006-2009 Oliver Sturm

Agenda

•  What is F#?
•  What is Functional Programming

all about and why is it suddenly
interesting?

•  Your choice of:
– F# syntax introduction
– The almost a business application

demo
– Advanced functions and functional

techniques

– Discriminated unions

Copyright © 2006-2009 Oliver Sturm

What is F#?

•  A .NET language with Visual Studio
integration

•  A hybrid language, supporting functional as
well as imperative and object oriented
paradigms

•  Type safe
•  Widely cross-compilable with Ocaml
•  Scriptable
•  F# is being “productized” for Visual Studio

2010

Copyright © 2006-2009 Oliver Sturm

What do you need to get started?

•  F# is currently a separate download,
available via
http://research.microsoft.com/fsharp/
fsharp.aspx

•  The latest release is the September 2008
CTP

•  Expect regular changes until Visual Studio
2010 is finalized

•  F# is not yet part of public Visual Studio
2010 pre-releases, but it will be in the future

Copyright © 2006-2009 Oliver Sturm

The concept of Functional Programming

•  Functional programming is a paradigm
•  FP tries to avoid shared state
•  Pure functions
–  results calculated only on the basis of input values
– pure functions don’t store or access information

outside themselves, avoid side effects
•  Functions are first class citizens, enabling

higher order functions
•  Higher order functions enable currying and

partial application
•  Functions are building blocks

Copyright © 2006-2009 Oliver Sturm

Avoiding side effects and shared state

•  Debugging benefits from this approach
•  Testing benefits as well
•  Scalability becomes easy
– no locking of data
– no manual analysis of code structure to find

scalable parts

•  Automatic optimization becomes possible
•  Maintainability improves drastically

Copyright © 2006-2009 Oliver Sturm

Parallelization is the trigger

•  Writing code without side effects makes
parallelization easy

•  Parallelization can be fully automatic… not
yet in F# though

•  Functional approaches offer many solutions
•  Functional programming as a paradigm is

not language specific, but the more language
support there is, the easier it becomes

Copyright © 2006-2009 Oliver Sturm

The reality is that…

•  F# is a .NET language that supports several different
programming paradigms

•  Automatic parallelization does not exist (yet?) on
the .NET Framework
–  but Parallel Extensions to the .NET Framework will be

part of .NET 4.0
–  the success of Erlang shows the reality of scalability,

stability and maintainability claims, Ericsson reports
99.9999999% uptime (down 1 second in 30 years)

•  Automatic optimization does not exist yet either
•  A combination of approaches results in the best code

for a particular purpose
•  The more flexible a programming language is, the

easier it is to combine approaches

Copyright © 2006-2009 Oliver Sturm

Code demo

•  A (almost) real-world business app
– The really ugly version
– The somewhat better version
– The seriously pretty good version

Copyright © 2006-2009 Oliver Sturm

Code demo

•  Recursive functions
•  Lambda expressions
•  Nested functions
•  Higher order functions

Copyright © 2006-2009 Oliver Sturm

Recursive functions

•  The “rec” keyword is required to denote a
function as recursive
–  if “rec” is missing, the function’s name is not in

scope in its own body

•  Tail recursion is applied automatically if the
recursive call is the last statement executed
in a recursive function

Copyright © 2006-2009 Oliver Sturm

Lambda expressions

•  Lambda expressions use the “fun” keyword
and the “‐>” (goes-to) operator

•  A lambda expression assigned to a value
results in the same function accessible
through that value as “let”-style function
creation

•  Lambda expressions are “anonymous
functions”

•  Lambda expressions cannot be recursive

Copyright © 2006-2009 Oliver Sturm

Nested functions

•  Functions do not have to be on “top level”
scope

•  Values assigned inside functions can also be
functions

•  The scope of nested functions is the same as
for any other value assigned on the same
“level”

Copyright © 2006-2009 Oliver Sturm

Higher order functions

•  Higher order functions take other functions
as parameters or return them as return
values

•  Any parameter passed to a function in F#
can be a function itself

•  Functions can be return values of functions
•  Lambda expressions can be used to pass

functions “in-line”
•  Functions referred to by the values they

have been assigned to can also be used to
pass as parameters

Copyright © 2006-2009 Oliver Sturm

Nested calls and chaining (piping)

•  Calls to functions delimit parameters with
spaces

•  Use parentheses to resolve ambiguity as well
as readability issues:
mult (add 10 30) 40 

•  Pipes append the result of one function to
the parameter list of another:
add 10 30 |> mult 40 

•  Pipes result in a more natural order of calls
in complex nested statements

Copyright © 2006-2009 Oliver Sturm

Composition

•  Assuming B = f1(A), C = f2(B)
 → C = f2(f1(A)) 

let square x = x * x 

let triple x = 3 * x 
... 
let a = 10 
let b = square a 
let c = triple b 
... 
let c = triple (square a) 

Getting from a to c
step by step

Getting from a to c by
nesting
calls

Copyright © 2006-2009 Oliver Sturm

Code demo

•  Nested calls, chaining
•  Composition

Copyright © 2006-2009 Oliver Sturm

Closures

•  Closures capture values that are used by
functions, when these functions leave their
scope

let createCalculation val = 
    let calc x = val * x 

    calc 

The function calc
needs the value
val to perform its
calculation

The function
leaves the scope
of the value val

Copyright © 2006-2009 Oliver Sturm

Code demo

•  Closures

Copyright © 2006-2009 Oliver Sturm

Currying

•  Currying is the process of transforming a
function with multiple parameters into a
chain of functions that each take one
parameter and return the next function,
until on the deepest level the calculation can
be performed with all parameters.

let add x y = x + y  let add x = 
    (fun y ‐> x + y) 

Copyright © 2006-2009 Oliver Sturm

Code demo

•  Curried format functions
•  Partial application
•  Functional precomputation
•  Memoization

Copyright © 2006-2009 Oliver Sturm

Curried format functions

•  In curried format, functions always take
exactly one parameter

•  Functions might return other functions to
gather additional parameters

•  The last function in the “chain” can perform
the calculation using all parameter values

•  Closures are used to store parameter values

Copyright © 2006-2009 Oliver Sturm

Partial application

•  Applying a function partially means passing
in some, but not all, parameters needed by
the function

•  Due to the curried format, partial
application of a function means that another
function is returned

•  Partial application is one approach in the
area of “function construction”, i.e. creating
new functions out of existing ones

Copyright © 2006-2009 Oliver Sturm

Functional precomputation

•  Precomputation is an approach where
expensive calculations are performed in
advance of an algorithm run

•  Precomputed values are stored for later use
•  Functional precomputation means using a

function, or a closure, as a storage location
– no “external” storage is therefore needed

•  Since curried functions are automatic in F#,
the approach is very elegant in this language

Copyright © 2006-2009 Oliver Sturm

Memoization

•  Memoization is a caching pattern that stores
values which have been calculated once for
later reuse

•  It is possible to memoize as a wrapper function
•  “Deep” memoization, i.e. memoization of a

chain of curried functions, requires Reflection
•  Memoizing via a wrapper functions is meant

not to change the algorithm
– when the function is recursive, memoization “from

the outside” is typically not possible

Copyright © 2006-2009 Oliver Sturm

Simple discriminated unions

•  Discriminated unions are data types
•  In simple cases discriminated unions behave

like enums
•  Their uses cases are similar to those of

enums
– case/kind distinction

type MemberKind =  
    | Method = 1 
    | Property = 2 
    | Field = 3 

Copyright © 2006-2009 Oliver Sturm

Elements that carry data

•  Elements of discriminated unions can carry
data

•  In this case, the compiler generates classes
automatically

type Product =  
    | OwnProduct of string 
    | RemoteReference of int 

class Product { ... } 
class OwnProduct : Product { ... } 
class RemoteReference : Product { ... } 

Copyright © 2006-2009 Oliver Sturm

Data can be complex

•  The data carried by elements may be of any
valid F# type

•  Use of simple tuples and other discriminated
unions results in powerful data structures

type Product =  
    | OwnProduct of string 
    | RemoteReference of int 

type StoreBooking =  
    | Incoming of Product * Count 
    | Outgoing of Product * Count 

Copyright © 2006-2009 Oliver Sturm

Definitions can be recursive

•  Type definitions for discriminated unions
can refer to themselves

•  Complex hierarchies can be created using
recursive discriminated unions

type Control =  
    | Button of Caption 
    | CheckButton of Caption * Checked 
    | Edit of Caption * StrContent 
    | Container of Control list 

Copyright © 2006-2009 Oliver Sturm

Code demo

•  Discriminated unions
– simple unions / enums
– data-carrying members
– members with complex types
– recursive unions
– using match expressions to analyze union

hierarchies
–  implementation of a linked list using

discriminated unions

Copyright © 2006-2009 Oliver Sturm

Summary

•  F# - great new option for .NET
development

•  Complete feature set spanning functional as
well as imperative/object-oriented
programming

•  I hope it was fun!

Copyright © 2006-2009 Oliver Sturm

Thank you

Please feel free to contact me about the
content anytime.

oliver@sturmnet.org

Listen to my podcast: http://www.sodthis.com

